[MS-OCPSTN]:
Session Initiation Protocol (SIP) for PSTN Calls Extensions

Intellectual Property Rights Notice for Open Specifications Documentation

- Technical Documentation. Microsoft publishes Open Specifications documentation (“this documentation”) for protocols, file formats, data portability, computer languages, and standards support. Additionally, overview documents cover inter-protocol relationships and interactions.
- Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other terms that are contained in the terms of use for the Microsoft website that hosts this documentation, you can make copies of it in order to develop implementations of the technologies that are described in this documentation and can distribute portions of it in your implementations that use these technologies or in your documentation as necessary to properly document the implementation. You can also distribute in your implementation, with or without modification, any schemas, IDLs, or code samples that are included in the documentation. This permission also applies to any documents that are referenced in the Open Specifications documentation.
- No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
- Patents. Microsoft has patents that might cover your implementations of the technologies described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of this documentation grants any licenses under those patents or any other Microsoft patents. However, a given Open Specifications document might be covered by the Microsoft Open Specifications Promise or the Microsoft Community Promise. If you would prefer a written license, or if the technologies described in this documentation are not covered by the Open Specifications Promise or Community Promise, as applicable, patent licenses are available by contacting iplg@microsoft.com.
- License Programs. To see all of the protocols in scope under a specific license program and the associated patents, visit the Patent Map.
- Trademarks. The names of companies and products contained in this documentation might be covered by trademarks or similar intellectual property rights. This notice does not grant any licenses under those rights. For a list of Microsoft trademarks, visit www.microsoft.com/trademarks.
- Fictitious Names. The example companies, organizations, products, domain names, email addresses, logos, people, places, and events that are depicted in this documentation are fictitious. No association with any real company, organization, product, domain name, email address, logo, person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming tools or programming environments in order for you to develop an implementation. If you have access to Microsoft programming tools and environments, you are free to take advantage of them. Certain Open Specifications documents are intended for use in conjunction with publicly available standards specifications and network programming art and, as such, assume that the reader either is familiar with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.
<table>
<thead>
<tr>
<th>Date</th>
<th>Revision History</th>
<th>Revision Class</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/4/2008</td>
<td>0.1</td>
<td>New</td>
<td>Initial version</td>
</tr>
<tr>
<td>4/25/2008</td>
<td>0.2</td>
<td>Minor</td>
<td>Updated based on feedback</td>
</tr>
<tr>
<td>6/27/2008</td>
<td>1.0</td>
<td>Major</td>
<td>Updated and revised the technical content</td>
</tr>
<tr>
<td>8/15/2008</td>
<td>1.01</td>
<td>Minor</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>9/12/2008</td>
<td>1.02</td>
<td>Minor</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>12/12/2008</td>
<td>2.0</td>
<td>Major</td>
<td>Updated and revised the technical content</td>
</tr>
<tr>
<td>2/13/2009</td>
<td>2.01</td>
<td>Minor</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>3/13/2009</td>
<td>2.02</td>
<td>Minor</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>7/13/2009</td>
<td>2.03</td>
<td>Major</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>8/28/2009</td>
<td>2.04</td>
<td>Editorial</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>11/6/2009</td>
<td>2.05</td>
<td>Editorial</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>2/19/2010</td>
<td>2.06</td>
<td>Editorial</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>3/31/2010</td>
<td>2.07</td>
<td>Major</td>
<td>Updated and revised the technical content</td>
</tr>
<tr>
<td>4/30/2010</td>
<td>2.08</td>
<td>Editorial</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>6/7/2010</td>
<td>2.09</td>
<td>Editorial</td>
<td>Revised and edited the technical content</td>
</tr>
<tr>
<td>6/29/2010</td>
<td>2.10</td>
<td>Editorial</td>
<td>Changed language and formatting in the technical content.</td>
</tr>
<tr>
<td>7/23/2010</td>
<td>2.10</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>9/27/2010</td>
<td>3.0</td>
<td>Major</td>
<td>Significantly changed the technical content</td>
</tr>
<tr>
<td>11/15/2010</td>
<td>3.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>12/17/2010</td>
<td>3.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>3/18/2011</td>
<td>3.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>6/10/2011</td>
<td>3.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>1/20/2012</td>
<td>4.0</td>
<td>Major</td>
<td>Significantly changed the technical content</td>
</tr>
<tr>
<td>4/11/2012</td>
<td>4.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>7/16/2012</td>
<td>4.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>10/8/2012</td>
<td>4.0.1</td>
<td>Editorial</td>
<td>Changed language and formatting in the technical content.</td>
</tr>
<tr>
<td>2/11/2013</td>
<td>4.0.1</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>Date</td>
<td>Revision History</td>
<td>Revision Class</td>
<td>Comments</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>7/30/2013</td>
<td>4.0.1</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>11/18/2013</td>
<td>4.0.1</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>2/10/2014</td>
<td>4.0.1</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>4/30/2014</td>
<td>4.1</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>7/31/2014</td>
<td>4.2</td>
<td>Minor</td>
<td>Clarified the meaning of the technical content.</td>
</tr>
<tr>
<td>10/30/2014</td>
<td>4.2</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>3/30/2015</td>
<td>5.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>9/4/2015</td>
<td>5.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>7/15/2016</td>
<td>5.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>9/14/2016</td>
<td>5.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>9/29/2016</td>
<td>5.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
<tr>
<td>4/27/2018</td>
<td>6.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>7/24/2018</td>
<td>7.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>8/28/2018</td>
<td>8.0</td>
<td>Major</td>
<td>Significantly changed the technical content.</td>
</tr>
<tr>
<td>6/18/2019</td>
<td>8.0</td>
<td>None</td>
<td>No changes to the meaning, language, or formatting of the technical content.</td>
</tr>
</tbody>
</table>
Table of Contents

1 Introduction ... 7
 1.1 Glossary ... 7
 1.2 References .. 9
 1.2.1 Normative References .. 9
 1.2.2 Informative References ... 9
 1.3 Overview ... 10
 1.4 Relationship to Other Protocols ... 11
 1.5 Prerequisites/Preconditions ... 11
 1.6 Applicability Statement ... 11
 1.7 Versioning and Capability Negotiation 11
 1.8 Vendor-Extensible Fields ... 12
 1.9 Standards Assignments ... 12

2 Messages .. 13
 2.1 Transport .. 13
 2.2 Message Syntax .. 13
 2.2.1 isGateway .. 13
 2.2.2 phone-context .. 13
 2.2.3 ms-call-source .. 14
 2.2.4 ms-early-media ... 14
 2.2.5 Anonymous Phone URI ... 14
 2.2.6 ms-bypass ... 14
 2.2.7 ms-accepted-content-id .. 14
 2.2.8 ms-trunking-peer ... 15
 2.2.9 ms-mediation-generated .. 15

3 Protocol Details ... 16
 3.1 isGateway Details .. 16
 3.1.1 Abstract Data Model .. 16
 3.1.2 Timers .. 16
 3.1.3 Initialization ... 16
 3.1.4 Higher-Layer Triggered Events 16
 3.1.5 Message Processing Events and Sequencing Rules 16
 3.1.6 Timer Events ... 16
 3.1.7 Other Local Events ... 16
 3.2 phone-context Details .. 16
 3.2.1 Abstract Data Model .. 17
 3.2.2 Timers .. 17
 3.2.3 Initialization ... 17
 3.2.4 Higher-Layer Triggered Events 17
 3.2.5 Message Processing Events and Sequencing Rules 18
 3.2.6 Timer Events ... 18
 3.2.7 Other Local Events ... 18
 3.3 ms-call-source Details ... 18
 3.3.1 Abstract Data Model .. 18
 3.3.2 Timers .. 18
 3.3.3 Initialization ... 18
 3.3.4 Higher-Layer Triggered Events 18
 3.3.5 Message Processing Events and Sequencing Rules 18
 3.3.6 Timer Events ... 19
 3.3.7 Other Local Events ... 19
 3.4 ms-early-media Details ... 19
 3.4.1 Abstract Data Model .. 19
 3.4.2 Timers .. 19
 3.4.3 Initialization ... 19
3.4.4 Higher-Layer Triggered Events ... 19
3.4.5 Message Processing Events and Sequencing Rules ... 19
3.4.6 Timer Events ... 20
3.4.7 Other Local Events ... 20
3.5 Anonymous Phone URI Details .. 20
3.5.1 Abstract Data Model ... 20
3.5.2 Timers .. 20
3.5.3 Initialization .. 20
3.5.4 Higher-Layer Triggered Events ... 20
3.5.5 Message Processing Events and Sequencing Rules ... 20
3.5.6 Timer Events .. 20
3.5.7 Other Local Events ... 20
3.6 ms-bypass Details .. 20
3.6.1 Abstract Data Model ... 21
3.6.2 Timers .. 21
3.6.3 Initialization .. 21
3.6.4 Higher-Layer Triggered Events ... 21
3.6.5 Message Processing Events and Sequencing Rules ... 21
3.6.6 Timer Events .. 21
3.6.7 Other Local Events ... 21
3.7 ms-accepted-content-id Details .. 21
3.7.1 Abstract Data Model ... 21
3.7.2 Timers .. 21
3.7.3 Initialization .. 21
3.7.4 Higher-Layer Triggered Events ... 22
3.7.5 Message Processing Events and Sequencing Rules ... 22
3.7.6 Timer Events .. 22
3.7.7 Other Local Events ... 22
3.8 ms-trunking-peer Details .. 22
3.8.1 Abstract Data Model ... 22
3.8.2 Timers .. 22
3.8.3 Initialization .. 22
3.8.4 Higher-Layer Triggered Events ... 22
3.8.5 Message Processing Events and Sequencing Rules ... 22
3.8.6 Timer Events .. 22
3.8.7 Other Local Events ... 22
3.9 ms-mediation-generated Details .. 23
3.9.1 Abstract Data Model ... 23
3.9.2 Timers .. 23
3.9.3 Initialization .. 23
3.9.4 Higher-Layer Triggered Events ... 23
3.9.5 Message Processing Events and Sequencing Rules ... 23
3.9.6 Timer Events .. 23
3.9.7 Other Local Events ... 23

4 Protocol Examples ... 24
4.1 isGateway SIP Contact Header Parameter ... 24
4.1.1 Inbound Call .. 24
4.1.1.1 Step 3: INVITE Message Is Received by the UAC ... 24
4.1.1.2 Step 7: 200 Message Is Sent from the UAC ... 25
4.1.2 Outbound Call ... 26
4.1.2.1 Step 1: INVITE Message Is Sent from the UAC ... 26
4.1.2.2 Step 13: 200 Message Is Received by the UAC ... 27
4.2 phone-context SIP URI Parameter ... 28
4.2.1 Inbound Call .. 28
4.2.1.1 Step 3: INVITE Message Is Received by the UAC ... 28
4.2.1.2 Step 7: 200 Message Is Sent from the UAC ... 29
4.2.2 Outbound Call ... 30

1 Introduction

The Session Initiation Protocol (SIP) for public switched telephone network (PSTN) Calls Extensions protocol consists of proprietary extensions applicable for interfacing a protocol client with other traditional telephony networks, such as the public switched telephone network (PSTN) and an enterprise private branch exchange (PBX) or IP-PBX.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in this specification are informative.

1.1 Glossary

This document uses the following terms:

200 OK: A response to indicate that the request has succeeded.

answer: A message that is sent in response to an offer that is received from an offerer.

Augmented Backus-Naur Form (ABNF): A modified version of Backus-Naur Form (BNF), commonly used by Internet specifications. ABNF notation balances compactness and simplicity with reasonable representational power. ABNF differs from standard BNF in its definitions and uses of naming rules, repetition, alternatives, order-independence, and value ranges. For more information, see [RFC5234].

call: A communication between peers that is configured for a multimedia conversation.

dial plan: The rules that govern the translation of dial strings into SIP and tel URIs, either global or local, as described in [RFC3966].

dial string: The numbers, symbols, and pauses that users enter to place a phone call. It is consumed by one or more network entities and understood in the context of the configuration of those entities. It is used to generate an address-of-record or identifier to route a call.

dialog: A peer-to-peer Session Initiation Protocol (SIP) relationship that exists between two user agents and persists for a period of time. A dialog is established by SIP messages, such as a 2xx response to an INVITE request, and is identified by a call identifier, a local tag, and a remote tag.

domain: A set of users and computers sharing a common namespace and management infrastructure. At least one computer member of the set must act as a domain controller (DC) and host a member list that identifies all members of the domain, as well as optionally hosting the Active Directory service. The domain controller provides authentication of members, creating a unit of trust for its members. Each domain has an identifier that is shared among its members. For more information, see [MS-AUTHSOD] section 1.1.1.5 and [MS-ADTS].

E.164: An international public telecommunication numbering plan that is used in the public switched telephone network (PSTN) and some data networks. It defines the format of telephone numbers. E.164 numbers can have a maximum of 15 digits and typically are written with a plus sign (+) prefix.

early media: Media, such as audio and video, that is exchanged before a specific session is accepted by the called user. During a dialog, early media occurs when the initial INVITE is sent, until the user agent server (UAS) generates a final response.

fully qualified domain name (FQDN): An unambiguous domain name that gives an absolute location in the Domain Name System's (DNS) hierarchy tree, as defined in [RFC1035] section 3.1 and [RFC2181] section 11.
gateway: A network edge device that bridges Microsoft Office Communications Server protocols with legacy telephony networks protocols.

INVITE: A Session Initiation Protocol (SIP) method that is used to invite a user or a service to participate in a session.

IP-PBX: A PBX that supports Voice over IP (VoIP).

Multipurpose Internet Mail Extensions (MIME): A set of extensions that redefines and expands support for various types of content in email messages, as described in [RFC2045], [RFC2046], and [RFC2047].

offer: A message that is sent by an offerer.

P-Asserted-Identity (PAI): A Session Initiation Protocol (SIP) header field, as described in [RFC3325], that is used by trusted entities to carry the identity of the user who is sending an SIP message as it was verified by authentication.

private branch exchange (PBX): A server-based telephony solution that services a specific organization or office.

proxy: A computer, or the software that runs on it, that acts as a barrier between a network and the Internet by presenting only a single network address to external sites. By acting as a go-between that represents all internal computers, the proxy helps protects network identities while also providing access to the Internet.

public switched telephone network (PSTN): Public switched telephone network is the voice-oriented public switched telephone network. It is circuit-switched, as opposed to the packet-switched networks.

SDP answer: A Session Description Protocol (SDP) message that is sent by an answerer in response to an offer that is received from an offerer.

SDP offer: A Session Description Protocol (SDP) message that is sent by an offerer.

Session Description Protocol (SDP): A protocol that is used for session announcement, session invitation, and other forms of multimedia session initiation. For more information see [MS-SDP] and [RFC3264].

Session Initiation Protocol (SIP): An application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. SIP is defined in [RFC3261].

SIP message: The data that is exchanged between Session Initiation Protocol (SIP) elements as part of the protocol. An SIP message is either a request or a response.

SIP transaction: A SIP transaction occurs between a UAC and a UAS. The SIP transaction comprises all messages from the first request sent from the UAC to the UAS up to a final response (non-1xx) sent from the UAS to the UAC. If the request is INVITE, and the final response is a non-2xx, the SIP transaction also includes an ACK to the response. The ACK for a 2xx response to an INVITE request is a separate SIP transaction.

Uniform Resource Identifier (URI): A string that identifies a resource. The URI is an addressing mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI): Generic Syntax [RFC3986].

user agent client (UAC): A logical entity that creates a new request, and then uses the client transaction state machinery to send it. The role of UAC lasts only for the duration of that transaction. In other words, if a piece of software initiates a request, it acts as a UAC for the duration of that transaction. If it receives a request later, it assumes the role of a user agent server (UAS) for the processing of that transaction.
user agent server (UAS): A logical entity that generates a response to a Session Initiation Protocol (SIP) request. The response either accepts, rejects, or redirects the request. The role of the UAS lasts only for the duration of that transaction. If a process responds to a request, it acts as a UAS for that transaction. If it initiates a request later, it assumes the role of a user agent client (UAC) for that transaction.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the most recently published version of the referenced document. However, because individual documents in the library are not updated at the same time, the section numbers in the documents may not match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will assist you in finding the relevant information.

[MS-SDPEXT] Microsoft Corporation, "Session Description Protocol (SDP) Version 2.0 Extensions".

1.2.2 Informative References

[MS-SIPREGE] Microsoft Corporation, "Session Initiation Protocol (SIP) Registration Extensions".

1.3 Overview

This protocol adds extensions to the Session Initiation Protocol (SIP), for interfacing a protocol client with other traditional telephony networks, such as a public switched telephone network (PSTN) and an enterprise private branch exchange (PBX) or IP-PBX.

The logical entities that are affected by these extensions are protocol client, server (proxy), and gateway entities. The protocol client and the gateway can function as a user agent client (UAC) or user agent server (UAS), depending on their role in the SIP transaction, as illustrated in the following diagram.

Figure 1: SIP transaction

The extensions do the following:

- Enable a SIP user agent (SIP UA) to be aware that a remote SIP UA in a SIP dialog is a gateway, as described in section 2.2.1 and section 3.1. This information can be rendered to the user interface (UI) to provide a better user experience (UX).

- Enable a SIP URI to hold an address of a dial string that is given by a user, as described in section 2.2.2 and section 3.2.
Enable a SIP UAS to detect a redundant call that is triggered as a result of a loop, as described in section 2.2.3 and section 3.3. A loop occurs when a call is forked to a PBX that forks the call back, using a new SIP dialog.

Enable a SIP UA to indicate that it is willing to receive an SDP answer through a non-reliable 183 provisional response to an INVITE message, as described in section 2.2.4 and section 3.4. Note that the standard recommends sending an SDP answer for early media only through a reliable provisional response, as described in [RFC3262].

Define an anonymous phone URI, as described in section 2.2.5 and section 3.5, as an alternative to the standard anonymous SIP URI, as described in [RFC3261]. Note that the standard anonymous SIP URI is not supported.

Enable a SIP UA in the protocol network to indicate that it supports media bypass functionality, as described in section 2.2.6 and section 3.6. Media bypass has the media from the protocol network entity involved in a PSTN call going directly to the gateway used to interface with the PSTN for that call, without traversing any intermediate element in the protocol network.

Enable a SIP UA in the protocol network to reference the appropriate Session Description Protocol (SDP) that was selected from a received offer when sending a SIP message with an answer to the offer, as described in section 2.2.7 and section 3.7.

Identify the specific gateway used to interface with the PSTN for a PSTN call, as described in section 2.2.8 and section 3.8.

1.4 Relationship to Other Protocols

This protocol uses the protocols as described in [MS-SIPAE], [MS-SIPREGE], [MS-SIPRE], and [MS-SDPEXT] as well as the following Internet Engineering Task Force (IETF) Session Initiation Protocol (SIP) specifications:

- SIP: Session Initiation Protocol, as described in [RFC3261].
- Session Initiation Protocol (SIP): Locating SIP Servers, as described in [RFC3263].
- the Private Extensions to the Session Initiation Protocol (SIP) for Asserted Identity within Trusted Networks, as described in [RFC3325].
- the Session Initiation Protocol (SIP) Refer Method, as described in [RFC3515].
- the Session Initiation Protocol (SIP) "Replaces" Header, as described in [RFC3891].
- the Session Initiation Protocol (SIP) Referred-By Mechanism, as described in [RFC3892].
- an Offer/Answer Model with the Session Description Protocol (SDP), as described in [RFC3264].

1.5 Prerequisites/Preconditions

None.

1.6 Applicability Statement

This protocol is applicable for interfacing a protocol client with other traditional telephony networks, such as a PSTN and an enterprise PBX or IP-PBX.
1.7 Versioning and Capability Negotiation

This protocol does not have protocol versioning. Instead, explicit capability negotiation is done by using the **Supported** header to indicate support of various features. The **Supported** header is the standard **SIP** mechanism for doing capability negotiation.

1.8 Vendor-Extensible Fields

None.

1.9 Standards Assignments

None.
2 Messages

2.1 Transport

This protocol relies on SIP transport.

2.2 Message Syntax

This protocol uses the SIP message format, as specified in [RFC3261] section 7, and extends definitions of URI parameters and headers by adding new values for parameter and header names as well as their corresponding values.

2.2.1 isGateway

The isGateway parameter is defined by this protocol as a new Contact header field parameter. The original Augmented Backus-Naur Form (ABNF), as defined in [RFC5234], for the Contact header field, as specified in [RFC3261] section 25, is extended as follows. The SIP Contact header field extension is the second line.

```
contact-params = c-p-q / c-p-expires
                / c-p-gw
                / contact-extension

  c-p-gw = "isGateway"
```

The syntax of the Contact header field with the SIP Contact header field extension is illustrated as follows. The extension is the final ;isGateway.

```
CONTACT: <sip:a@example.com;gruu;opaque=srvr:MediationServer:xxx;grid=yyy>;isGateway
```

2.2.2 phone-context

This protocol extends the semantics of the phone-context parameter but does not change its syntax, as specified in [RFC3966]. The phone-context value for a dial string is the provisioned location profile name of the user.

The phone-context extension defines the following two phone-context names:

- "dialstring"
- "enterprise"

The first one is used if a user location profile name is not provisioned, and the second is used if a SIP URI holds a phone number in a non-E.164 format that is a result of applying enterprise dial plan rules.

The syntax of a SIP URI with a phone-context parameter is illustrated as follows:

```
sip:12345;phone-context-ipl@example.com;user-phone
```

In the previous line, example.com is the host part of the SIP URI. It is not affected by the phone-context parameter.
2.2.3 ms-call-source

The ABNF, as defined in [RFC5234], for the `ms-call-source` SIP header is as follows:

```
Ms-Call-Source = "Ms-Call-Source" HCOLON ("ms-rtc" / "non-ms-rtc")
```

The supported tokens for the `ms-call-source` header are "ms-rtc" and "non-ms-rtc". The first token designates that the call originated from a protocol server network, and the latter means that the call originated from a non–protocol server network, such as a PSTN or IP-PBX.

The syntax of this header is illustrated as follows:

```
Ms-Call-Source: ms-rtc
```

2.2.4 ms-early-media

The `ms-early-media` option tag is a proprietary option tag for the `SIP Supported` header, as specified in [RFC3261] section 20.37.

The syntax of the `ms-early-media` tag in the `Supported` header is illustrated as follows:

```
supported: ms-early-media
```

2.2.5 Anonymous Phone URI

The anonymous phone URI is an alternative to the standard anonymous SIP URI, as specified in [RFC3261]. The user part of the SIP URI is set with the value "anonymous" and the parameter `user=phone` is added to the URI.

The syntax of a SIP URI with these settings is illustrated as follows:

```
sip:anonymous@contoso.com;user=phone
```

2.2.6 ms-bypass

The `ms-bypass` option tag is a proprietary option tag for the `SIP Supported` header, as specified in [RFC3261] section 20.37.

2.2.7 ms-accepted-content-id

The ABNF, as defined in [RFC5234], for the `ms-accepted-content-id` SIP header is as follows:

```
ms-accepted-content-id = "ms-accepted-content-id" HCOLON content-id
```

The `content-id` element is specified in [RFC2045] section 7 and [RFC2111] section 2. Note that the `ms-accepted-content-id` header includes the value of the Content-ID MIME header associated with the selected SDP offer.

The syntax of the `ms-accepted-content-id` header is illustrated as follows:

```
ms-accepted-content-id: <da6e05c91d6b4132afa14d8b528732e6>
```
2.2.8 ms-trunking-peer

The ABNF, as defined in [RFC5234], for the **ms-trunking-peer** SIP header is as follows:

```
ms-trunking-peer = "ms-trunking-peer" HCOLON host *1(SEMI trunkname) *1(SEMI User-Agent)
trunkname = "trunk" EQUAL hostname
User-Agent = "User-Agent" EQUAL quoted-string
```

The **host**, **hostname**, and **quoted-string** elements are specified in [RFC3261] section 25.

The syntax of the **ms-trunking-peer** header is illustrated as follows:

```
ms-trunking-peer: gateway.company1.com;trunk=trunk1;User-Agent="Gateway 1.0"
```

2.2.9 ms-mediation-generated

The ABNF, as defined in [RFC5234], for the **ms-mediation-generated** SIP header is as follows:

```
ms-mediation-generated = "ms-mediation-generated" HCOLON "yes"
```

The syntax of the **ms-mediation-generated** header is illustrated as follows:

```
ms-mediation-generated: yes
```
3 Protocol Details

3.1 isGateway Details

UAC Behavior

If a UAC has a gateway role, it MUST insert the isGateway parameter in the Contact header. Otherwise, it MUST NOT insert this parameter in the Contact header.

UAS Behavior

If a UAS receives a SIP message with a Contact header that includes an isGateway parameter, it SHOULD render it to the application. The application MAY display this information to the user.

Proxy Behavior

This parameter does not affect a SIP proxy.

3.1.1 Abstract Data Model

None.

3.1.2 Timers

None.

3.1.3 Initialization

None.

3.1.4 Higher-Layer Triggered Events

None.

3.1.5 Message Processing Events and Sequencing Rules

None.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 phone-context Details

UAC Behavior

A UAC that is about to send an INVITE message to an address of a dial string MUST use the following logic. If a UAC cannot resolve the dial string to a SIP URI with an E.164 number of a remote party, based on local provisioning, it MUST set the SIP URI of the Request URI header with a phone number and a phone-context of the phone number in the user part of the SIP URI, as specified in [RFC3966] section 5.1.5. The value of the phone-context SIP URI parameter holds the location...
profile name of the user if the dial string could not be resolved or the resolution of the dial string is to a non-E.164 number. If a user profile name is not provisioned and the dial string is not an E.164 number, the user agent MUST set phone-context to the default predefined dialstring name.

Callback presents another case where an outgoing call can have a Request URI and To URI containing a phone-context parameter. An incoming call to a UA can have a P-Asserted-Identity (PAI) header containing a non-E.164 number with a phone-context of "dialstring". Alternatively an incoming call to a UA can have a P-Asserted-Identity header containing a non-E.164 number with a phone-context of "enterprise". If the callback feature is implemented in the UA, the value of the P-Asserted-Identity header SHOULD be used to populate the Request URI and To URI fields in the INVITE triggered by the callback.

A UAC SHOULD set a valid SIP URI in the From header. If the SIP URI is in a phone number format, user=phone, the phone number SHOULD be in either E.164 format or a private number with a phone-context that is set with the location profile of the UAC.

UAS Behavior

If a UAS has a gateway role, it SHOULD include a P-Asserted-Identity in the 200 OK that it sends in response to an initial INVITE used to establish a dialog. This 200 OK is derived by using the Request URI from the initial INVITE used to establish the dialog. If this Request URI is used, and it contains an E.164 number in the user part, the UAS SHOULD copy it to the PAI. If this Request URI is used, and it contains a non-E.164 number in the user part, the UAS SHOULD copy it to the P-Asserted-Identity (PAI) and the phone-context SHOULD be set to the location profile of the UAS.

Proxy Behavior

A SIP proxy that receives a SIP URI with a phone-context in the Request URI MUST try to match the phone-context name with a list of provisioned dial plan names. If there is a match, it MUST convert the SIP URI based on the rules that are defined in the matched dial plan. Otherwise if there is no match, it SHOULD use other proxy logic to route this URI.

A P-Preferred-Identity header is a SIP header field, as described in section 9.2 of [RFC3325], which carries the preferred identity for the user sending the SIP message. This header field is sent by a UA to a trusted proxy to be inserted as the value in the P-Asserted-Identity (PAI) header field.

A SIP proxy that receives an INVITE that contains a phone-context in the From URI SHOULD try to match the phone-context name with a list of provisioned dial plan names. If there is a match, and the INVITE does not contain a P-Asserted-Identity (PAI) or P-Preferred-Identity header, the proxy SHOULD apply the rules defined in the matched dial plan and add a P-Asserted-Identity (PAI) with the result of the translation. If the result of the translation is not an E.164 number, the proxy SHOULD insert a phone-context with the value "enterprise".

3.2.1 Abstract Data Model

None.

3.2.2 Timers

None.

3.2.3 Initialization

None.

3.2.4 Higher-Layer Triggered Events

None.
3.2.5 Message Processing Events and Sequencing Rules
None.

3.2.6 Timer Events
None.

3.2.7 Other Local Events
None.

3.3 ms-call-source Details

UAC Behavior
If the UAC is a gateway, it MUST insert an ms-call-source header in the SIP INVITE message that is sent to a UAS with the value "ms-rtc".

If the UAC is a gateway, it MUST insert an ms-call-source header in the SIP INVITE message that is sent to the PSTN with the value "non-ms-rtc".

If the UAC is not a gateway, it MUST NOT insert an ms-call-source header in an INVITE message.

UAS Behavior
If a UAS receives an INVITE message with an ms-call-source header while in alerting state in another SIP dialog, it MUST reject the INVITE message with a 605 error code. Otherwise, it processes the INVITE as a regular INVITE message.

Proxy Behavior
If a SIP proxy receives an INVITE with an ms-call-source header and the call is forwarded to a different user based on the forwarding rules of the original user, it MUST strip the header.

If a SIP proxy receives an INVITE with an ms-call-source header and it forwards the INVITE to a user who is not provisioned to receive loop calls, as described in section 1.3, it MUST strip this header.

If a SIP proxy receives a 605 message to an INVITE message that includes the ms-call-source header, it MUST send back a 480 message to the previous hop.

3.3.1 Abstract Data Model
None.

3.3.2 Timers
None.

3.3.3 Initialization
None.

3.3.4 Higher-Layer Triggered Events
None.
3.3.5 Message Processing Events and Sequencing Rules

None.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

3.4 ms-early-media Details

UAC Behavior

If a UAC supports an SDP answer in a non-reliable 183 provisional response to an INVITE message, it MUST send a SIP Supported header with the ms-early-media option tag. The SDP content and the procedure for starting early media are specified in [MS-SDPEXT] section 3.1.5.12.

UAS Behavior

A UAS with a gateway role that receives an INVITE with a Supported header that includes an ms-early-media option tag MUST send an unreliable 183 provisional response with an SDP answer. The SDP content and the procedure for starting early media are specified in [MS-SDPEXT] section 3.1.5.12.

A UAS with a non-gateway role that receives an INVITE with a Supported header that includes an ms-early-media option tag MAY send an unreliable 183 provisional response with an SDP answer. The SDP content and the procedure for starting early media are specified in [MS-SDPEXT] section 3.1.5.12.

Proxy Behavior

There is no special handling for this extension for a SIP proxy.

3.4.1 Abstract Data Model

None.

3.4.2 Timers

None.

3.4.3 Initialization

None.

3.4.4 Higher-Layer Triggered Events

None.

3.4.5 Message Processing Events and Sequencing Rules

None.
3.4.6 Timer Events
None.

3.4.7 Other Local Events
None.

3.5 Anonymous Phone URI Details
The special URI "anonymous@host;user=phone" in the From header field MUST be used to denote an anonymous user. <7> The host portion contains the IP address, fully qualified domain name (FQDN), or domain of the user. The encoding for an anonymous user that uses "anonymous.invalid" in the host portion MUST NOT be used.

3.5.1 Abstract Data Model
None.

3.5.2 Timers
None.

3.5.3 Initialization
None.

3.5.4 Higher-Layer Triggered Events
None.

3.5.5 Message Processing Events and Sequencing Rules
None.

3.5.6 Timer Events
None.

3.5.7 Other Local Events
None.

3.6 ms-bypass Details
A user agent (UA) supporting media bypass SHOULD <8> include a Session Initiation Protocol (SIP) Supported header with the ms-bypass option tag whenever it advertises the options it supports. Media bypass has the media from the protocol network entity involved in a public switched telephone network (PSTN) call going directly to the gateway used to interface with the PSTN for that call, without traversing any intermediate element in the protocol network.
3.6.1 Abstract Data Model
None.

3.6.2 Timers
None.

3.6.3 Initialization
None.

3.6.4 Higher-Layer Triggered Events
None.

3.6.5 Message Processing Events and Sequencing Rules
None.

3.6.6 Timer Events
None.

3.6.7 Other Local Events
None.

3.7 ms-accepted-content-id Details
This section describes the ms-accepted-content-id SIP header.<9>

UAC Behavior
A UAC MUST include a Content-ID MIME header with each Multipurpose Internet Mail Extensions (MIME) type of "application/SDP" and "application/gw-sdp" that it sends in an offer. The SDP content is specified in [MS-SDPEXT] section 3.

UAS Behavior
A UAS MUST include an ms-accepted-content-id SIP header in a SIP message containing an SDP answer if the selected SDP from the offer with which the answer is associated contained a Content-ID MIME header. The value of the Content-ID MIME header from the selected SDP in the offer MUST be copied as the value for the ms-accepted-content-id header.

Proxy Behavior
This parameter does not affect a SIP proxy.

3.7.1 Abstract Data Model
None.
3.7.2 Timers
None.

3.7.3 Initialization
None.

3.7.4 Higher-Layer Triggered Events
None.

3.7.5 Message Processing Events and Sequencing Rules
None.

3.7.6 Timer Events
None.

3.7.7 Other Local Events
None.

3.8 ms-trunking-peer Details
The ms-trunking-peer Session Initiation Protocol (SIP) header is included by a SIP UA that has a gateway role. It is used to identify the specific gateway used to interface with the public switched telephone network (PSTN) for a PSTN call.<10>

3.8.1 Abstract Data Model
None.

3.8.2 Timers
None.

3.8.3 Initialization
None.

3.8.4 Higher-Layer Triggered Events
None.

3.8.5 Message Processing Events and Sequencing Rules
None.

3.8.6 Timer Events
None.
3.8.7 Other Local Events
None.

3.9 ms-mediation-generated Details
The ms-mediation-generated Session Initiation Protocol (SIP) header is included by a SIP UA that has a gateway role.<11> It is used in provisional responses to indicate that the response was auto-generated by the UA and is not forwarded from a gateway used to interface with the public switched telephone network (PSTN) for a PSTN call.

3.9.1 Abstract Data Model
None.

3.9.2 Timers
None.

3.9.3 Initialization
None.

3.9.4 Higher-Layer Triggered Events
None.

3.9.5 Message Processing Events and Sequencing Rules
None.

3.9.6 Timer Events
None.

3.9.7 Other Local Events
None.
4 Protocol Examples

4.1 isGateway SIP Contact Header Parameter

4.1.1 Inbound Call

Figure 2: Inbound call

The preceding figure includes only one message in each direction because other messages repeat the same values.

The messages in the following subsections illustrate the use of the **Contact** header **isGateway** parameter in messages that are sent from and received by a protocol client.

4.1.1.1 Step 3: INVITE Message Is Received by the UAC

```plaintext
INVITE sip:10.56.66.167:1501;transport=tls;ms-opaque=56d3073f52;ms-received-cid=8000 SIP/2.0
Record-Route: <sip:server1.example.com:5061;transport=tls;ms-role-rs-from;lr;ms-
identity=C8yb10ausk5JrJOeabpGevn17YoohctFBSEB30y33pmWw9xH_oTAlgAA;ms-route-
sig=ea0m1vIX8i1jETotqsv9nVQESDR_2qR9xH_oTAlgAA>;tag=D78DE2B2FF72E24FDA98B88DC879B2 Via: SIP/2.0/TLS 10.56.64.202:5061;branch=z9hG4bKD262F853.B047DC47;branched=TRUE;ms-
internal-info="daqI8a1fcNQkUHDJyMoUxdQudrDTCwR9xH_oEdQAA"
Authentication-Info: Kerberos
rsauth="602306092884886F71201020120201011100FFFFFF1125b31E1322F66E665212D8DE6CA4",
srand="A8085D66", snum="58", opaque="C216B7E9", qop="auth",
targetname="sip/media.example.com", realm="SIP Communications Service"
Max-Forwards: 69
Content-Length: 1606
Via: SIP/2.0/TLS 10.56.64.207:2861;branch=z9hG4bK27555a4e;ms-received-port=2861;ms-
received-cid=8900
```
4.1.1.2 Step 7: 200 Message Is Sent from the UAC

SIP/2.0 200 OK
Via: SIP/2.0/TLS 10.56.64.202:5061;branch=z9hG4bKD262F853.B047DC47;branched=TRUE;ms-internal-info="daqI8a1fcNQkUHDJyMoUxdQudrDTCwR9xH7_OEdQAA"
Via: SIP/2.0/TLS 10.56.64.207:2861;branch=z9hG4bK27555a4e;ms-received-port=2861;ms-received-cid=8900
From: <sip:anonymous@server1.example.com;user=phone>;epid=571F84BB45;tag=ed77bad0f0
To: <sip:7275036;phone-context=normal-loc@server1.example.com;user=phone>;epid=7827660e0c
Call-ID: 46bac89b-3f5f-4f1f-bb0b-e791706e2401
CSeq: 6 INVITE
Record-Route: <sip:server1.example.com:5061;transport=tlsw;ms-role=rs-from;lr;ms-identity=C8yb10ausk5JrrJOeabpGevnl7YoohctFBsEBB3oy33pmWwR9xH_otAlgAA;ms-route-sig=ea0m1vIX8i1jETotqsV9nVQESDR_2qW9xH_oTA1gAA;tag=D78DE2B2FF72EB24FDA98B88DC879b2
Contact: <sip:alice@server1.example.com;opaque=user:epid:reTyjuqAaVmcCI0qIA4wAA;gruu>
User-Agent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Client)
P-Preferred-Identity: <sip:alice@server1.example.com>, <tel:+15555550103>
Proxy-Authorization: Kerberos qop="auth", realm="SIP Communications Service", opaque="C216B7E9", crand="dde2ad45", cnum="44", targetname="sip:server1.example.com", response="602306092a864886f712010202010110ffshff77de9d7a16f96939a9cc29ed8d6735499"
Content-Type: application/sdp
4.1.2 Outbound Call

Figure 3: Outbound call

The preceding figure includes only one message in each direction because other messages repeat the same values.

The messages in the following subsections illustrate the use of the **Contact** header *isGateway* parameter in messages that are sent from and received by a **UAC**.

4.1.2.1 Step 1: INVITE Message Is Sent from the UAC

```
INVITE sip:+15555550103@server1.example.com;user=phone SIP/2.0
Via: SIP/2.0/TLS 10.56.66.167:1501
Max-Forwards: 70
From: <sip:alice@server1.example.com>;tag=85e83db3c6;epid=782abb8f70
To: <sip:+15555550103@server1.example.com;user=phone>
Call-ID: accd397afad9439d880f45cfce04bd66
CSeq: 1 INVITE
Contact: <sip:alice@server1.example.com;opaque=user;epid:reTyjuqAaVmcCIO4qlA4vwAA;gruu>
User-Agent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Client)
Ms-Conversation-ID: AchdT5LJJVktNrrSjejQUAy0wfoA==
Supported: timer
Supported: ms-sender
Supported: ms-early-media
ms-keep-alive: UAC;hop-hop=yes
```
4.1.2.2 Step 13: 200 Message Is Received by the UAC

```plaintext
SIP/2.0 200 OK
Authentication-Info: Kerberos
rspauth="602306092A864886F71D2010201011100F800800052D07C86052224",
srand="B997073B", snum="50", opaque="C216B7E9", gop="auth",
targetname="sip/server1.example.com", realm="SIP Communications Service"
Via: SIP/2.0/TLS 10.56.66.167:1501;ms=received;port=1501;ms=received-cid=8000
FROM: "alice"<sip:alice@server1.example.com>;tag=85e83db3c6;epid=782abb8f70
TO: <sip:+15555550103@server1.example.com;user=phone>;epid=571F84BB45;tag=a0f83282b
CSEQ: 1 INVITE
CALL-ID: accd397afad9439d880f45cfce04bd66
RECORD-ROUTE: <sip:server1.example.com:5061;transport=tls;ms=role-rs-from;lr;ms-route- sig=eab5FPD_tLMiadtWiQ5tem-72y4vocRve_oTA1gAA>
CONTACT: <sip:server1.example.com@server1.example.com;gruu;opaque=srvr:MediationServer:ANaNrdcy8Em-5kmqX-wAA;grid=439be8c54ef04ce0baa8842286f86c53>;isGateway
CONTENT-LENGTH: 1412
SUPPORTED: gruu
SUPPORTED: replaces
CONTENT-TYPE: application/sdp; charset=utf-8
ALLOW: Update
P-Preferred-Identity: <sip:alice@server1.example.com>, <tel:+15555550103>
```

4.2 phone-context SIP URI Parameter

4.2.1 Inbound Call

Figure 4: Inbound call

The preceding figure includes one message in each direction because other messages repeat the same values.

The messages in the following subsections illustrate the use of the phone-context parameter in messages that are sent from and received by the UAC.

4.2.1.1 Step 3: INVITE Message Is Received by the UAC

A UAS proxy replaces the Request URI header with the phone-context parameter that is received from the gateway. However, the To header is not replaced and holds the SIP URI with the phone-context that was inserted by the gateway.

INVITE sip:10.56.66.167:1501;transport=tls;ms-opaque=56d3073f52;ms-received-cid=8000
SIP/2.0
Record-Route: <sip:server1.example.com:5061;transport=tls;ms-role-rs-from;lr;ms-identity=C8yb10ausk5JrrJOeabpGevn17YoohctFBsEB30y33pmWwR9xH_oTAlgAA;ms-route-sig=ea0Mv1X8ijETc0tsV9nVQBSDR_2qwr9xH_oTAlgAA>;tag=D78DE2B2FF72EB24FDA98B88DCC879B2
Via: SIP/2.0/TLS 10.56.64.202:5061;branch=z9hG4bKD262F853.B047DC47;bridged=TRUE;ms-received-cid=8900
From: <sip:+15555550103@server1.example.com;user=phone>;epid=571F84BB45;tag=ed77bad0f0
To: <sip:7275036;phone-context=normal-loc@server1.example.com;user=phone>;epid=782abb8f70
CSeq: 6 INVITE
Call-ID: 46bac89b-3f5f-4f1f-bb0b-e791706e2401
Contact:
<sip:server1.example.com@server1.example.com;gruu;opaque=srvr:MediationServer:ANaNrdcy8EmB-dKMljqx-wAA;grid=9b192c6b829d4373adb88ea9ef4df03>;isGateway
Supported: replaces
Supported: gruu=10
User-Agent: RTCC/3.0.0.0 MediationServer
Content-Type: application/sdp; charset=utf-8

4.2.1.2 Step 7: 200 Message Is Sent from the UAC

SIP/2.0 200 OK
Via: SIP/2.0/TLS 10.56.64.202:5061;branch=z9hG4bKD262F853.B047DC47;branched=TRUE;ms-internal-info="daqI8a1fc9NQKUHDJyMoUxdQudrDTCwWR9xH7_CEEdqAA"
Via: SIP/2.0/TLS 10.56.64.207:2861;branch=z9hG4bK27555a4e;ms-received-port=2861;ms-received-cid=8900
From: <sip:+15555550103@server1.example.com;user=phone>;epid=571F84BB45;tag=ed77bad0f0
To: "" <sip:7275036;phone-context=normal-loc@server1.example.com;user=phone>;epid=782abb8f70;tag=8827660e0c
Call-ID: 46bac89b-3f5f-4f1f-bb0b-e791706e2401
CSeq: 6 INVITE
Record-Route: <sip:server1.example.com:5061;transport=tls;ms-role=rs-from;lr;ms-identity=C8ybl0ausk5JrrJOeabpGevnl7YoohctFBsEB30y33pmWwR9xH_oTAlgAA;ms-route-sig=ea0m1vIX8ijETotgsV9nQVQESDR_2qwR9xH_oTAlgAA;tag=D78DE2B2FF72EB24FDA98B88DC879B2
Contact: <sip:alice@server1.example.com;opaque=user:epid:reTyjuqAaVmcCIO4 qlA4vwAA;gruu>
User-Agent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Client)
P-Preferred-Identity: <sip:alice@server1.example.com>, <tel:+15555550106>
Proxy-Authorization: Kerberos qop="auth", realm="SIP Communications Service",
opcode="C216B7E9", crand="dd2ad45", cnum="44", targetname="sip/server1.example.com", response="602306092a864886f7120102020102011100fffffffff77de9d7a16f9693a9cc29ed8d6735499"
Content-Type: application/sdp
4.2.2 Outbound Call

Figure 5: Outbound call

The preceding figure includes one message in each direction because other messages repeat the same values.

The messages in the following subsections illustrate the use of the phone-context parameter in messages that are sent from and received by a UAC.

4.2.2.1 Step 1: INVITE Message Is Sent from the UAC

```plaintext
INVITE sip:72181;phone-context=dialstring@example.com;user=phone SIP/2.0
Via: SIP/2.0/TLS 10.56.64.148:4031
Max-Forwards: 70
From: <sip:test2@example.com>;tag=cefe741803;epid=7d725e08a1
To: <sip:72181;phone-context=dialstring@example.com;user=phone>
Call-ID: a6a53b0e3b7d40a3b445dc4d9249b5fe
CSeq: 1 INVITE
Contact: <sip:test2@example.com;opaque=user;epid=0UNa0AXIFCRDgr367kcHwAA;gruu>
User-Agent: UCCP/2.0.6362.36 OC/2.0.6362.36 (Client)
Ms-Conversation-ID: Achis3b6kqlLEhnZR/+DMH2N7CO9hg==
Supported: timer
Supported: ms-sender
Supported: ms-early-media
ms-keep-alive: UAC;hop-hop=yes
```
4.2.2.2 Step 13: 200 Message Is Received by the UAC

SIP/2.0 200 OK
Authentication-Info: NTLM rsrpauth="01000000653865359728F3C8E25E6F9B", srand="8A3F6211", snum="19", opaque="9ACB05CE", qop="auth", targetname="server1.example.com", realm="SIP Communications Service"
Via: SIP/2.0/TLS 10.56.64.148:4031;ms-received-port=4031;ms-received-cid=500
FROM: "test2"<sip:test2@example.com>;tag=cefe741803;epid=7d725e08a1
TO: <sip:72181;phone-context=dialstring@example.com;user=phone>;epid=6477F45221;tag=a5c53ff9d6
CSEQ: 1 INVITE
CALL-ID: a6a53b0e3b7d40a3b445dc4d9249b6fe
RECORD-ROUTE: <sip:server1.example.com:5061;transport=tls;ms-role=rs-from;lr;ms-route-sig=aaabLHUMznhhFXTzutN9dwpQ-RmwQYZA_UIeytlQAA>
CONTACT: <sip:SH13-LCT.example.com@example.com;gruu;opaque=srvr:MediationServer:TIRig7bu5kGXhNJb1ZwQfgAA;grid=f1f39379bd9334f69a1dfb77bed58905>;isGateway
CONTENT-LENGTH: 740
SUPPORTED: gruu-10
SUPPORTED: replaces
CONTENT-TYPE: application/sdp; charset=utf-8
4.3 ms-call-source SIP Header

4.3.1 Inbound Call

The preceding figure includes only key messages that are described in this section. The messages in the following subsections illustrate the use of the **ms-call-source** header in messages that are sent from and received by a **UAC**.

4.3.1.1 Step 2: INVITE Message Is Received by the UAC

This **INVITE** originates from a protocol client; therefore, it does not include an **ms-call-source** header.

```
INVITE sip:10.56.66.167:3080;transport=tls;ms-opaque=0e2b3bcc10;ms-received-cid=300 SIP/2.0
Record-Route: <sip:server1.example.com:5061;transport=tls;ms-role=rs-to;ms-role=rs-from;lr;ms-route=sig=aa1PYPSx-ublLaoi5ZiQoMHgU310xkBB1lt2WZQAA>;tag=8951C70C798E10EA48EB960AAAB379BC Via: SIP/2.0/TLS 172.29.106.3:5061;branch=z9hG4bK76F2CFD5.31901062;branched=TRUE;ms-internal-info="aaC8UGYE_vlAf4m36gl1N15UxkBBihbkIPAA"
Authentication-Info: NTLM rspauth="01000004441541C22E2F66F9C0F09", srand="4CB6D6F5", snum="31", opaque="FB347BC6", qop="auth", targetname="server1.example.com", realm="SIP Communications Service"
Max-Forwards: 69
Content-Length: 1074
Via: SIP/2.0/TLS 10.56.64.148:3981;ms-received-port=3981;ms-received-cid=200 P-Asserted-Identity: "test2"<sip:test2@example.com>,<tel:+15555550100>
From: "test2"<sip:test2@example.com>;tag=89930971aa;epid=7d725e0a1
To: <sip: test1@example.com>;epid=782aabb8f70
Call-ID: ee22d219e9f44441bbac7b304ddc1996
```
4.3.1.2 Step 8: INVITE Message Is Received by the UAC

This call originates from the private branch exchange (PBX); therefore, it includes an ms-call-source header.

```
INVITE sip:1056.66.167:3080;transport=tls;ms-opaque=0e2b3bcc10;ms-received-cid=300 SIP/2.0
Record-Route: <sip:server1.example.com:5061;transport=tls;ms-role=rs-from;lr;m;
identity=B5buGzyhwo49ocKOaabbgxdAqaQRu_k9c2xy4WT-659Sg6MH6Lt2WQAA;ms-route=
sig=aa30e9351YmA5vATn4kbtb_Zd-6MHw6Lt2WQAA>;tag=8951c70c798e10e48eb96e44b379bc Via: SIP/2.0/TLS 172.29.106.3:5061;branch=z9hG4bKD300E89E.BA307C3A;branched=TRUE;ms-
internal-info="aaKlz4lwQeqhL-R5X7wnN8hEhuJwK6MHw6hbkIPAAA" Authentication-Info: NTLM rspauth="0100000000000000A761D372F9C08F09", snum="32", opaque="FB347BC6", qop="auth", targetname="server1.example.com", realm="SIP Communications Service"
Max-Forwards: 69 Content-Length: 934 Via: SIP/2.0/TLS 10.198.92.126:4757;branch=z9hG4bK557e25e3;ms-received-port=4757;ms-
received-cid=700 From: <sip:2160;phone-context=dialstring@example.com;user=phone>;epid=6477f45221;tag=4a3a3579bb To: <sip:+155555550108@example.com;user=phone>;epid=782abb8f70 CSeq: 179 INVITE Call-ID: 729ab37d-c0f5-4ad7-b7e0-8f3dadb9065 Contact: <sip:SH13-LCT.example.com@example.com;gruu;opaque=srvr:MediationServer:TIRig7bu5kGXNJB1ZwQfgAA;grid=2c6b5299f4d930a6f0a82dbfcd39e4>;isGateway Supported: replaces Supported: gruu=10 User-Agent: RTCC/3.0.0.0 MediationServer Content-Type: application/sdp; charset=utf-8 Allow: UPDATE Allow: Ack, Cancel, Bye, Invite, Refer Ms-Call-Source: non-ms-rtc
```

4.3.1.3 Step 9: 605 Message Is Sent from the UAC

This INVITE is rejected with a 605 Decline because it originated as a result of a loop in the private branch exchange (PBX).

```
SIP/2.0 605 Decline Everywhere Via: SIP/2.0/TLS 172.29.106.3:5061;branch=z9hG4bKD300E89E.BA307C3A;branched=TRUE;ms-
internal-info="aaKlz4lwQeqhL-R5X7wnN8hEhuJwK6MHw6hbkIPAAA"
Via: SIP/2.0/TLS 10.198.92.126:4757;branch=z9hG4bK557e25e3;ms-received-port=4757;ms-
received-cid=700 From: <sip:2160;phone-context=dialstring@example.com;user=phone>;epid=6477f45221;tag=4a3a3579bb To: "" <sip:+155555550108@example.com;user=phone>;epid=782abb8f70;tag=b9bc5b444c Call-ID: 729ab37d-c0f5-4ad7-b7e0-8f3dadb9065 CSeq: 179 INVITE
```
4.3.1.4 Step 12: 200 Message Is Sent from the UAC

The first **INVITE** from a protocol client is accepted and the following **200 OK** is sent.

```
SIP/2.0 200 OK
Via: SIP/2.0/TLS 172.29.106.3:5061;branch=z9hG4bK76F2CFD5.31901062;branched=TRUE;ms-
    internal-info="aaC8UGYE_v1Ajm36gJ1-v1MQi150XkkBBihbIIPAAAA"
Via: SIP/2.0/TLS 10.56.64.148:3981;ms-
    received-port=3981;ms-received-cid=200
From: "test2"<sip:test2@example.com>;tag=08399379aa;epid=7d725e08a1
To: ""<sip:test1@example.com>;epid=782abb8f70;tag=281b612cd0
Call-ID: ee22d219e9f4441bbac7b304ddc1096
CSeq: 1 INVITE
```

4.3.2 Outbound Call

The **ms-call-source** header is not sent or received by a **UAC** in this scenario.

4.4 ms-early-media SIP Supported Header Option Tag

4.4.1 Inbound Call

The **ms-early-media** tag is not sent or received by a **UAC** in this scenario.
4.4.2 Outbound Call

![Diagram of Outbound Call](image)

Figure 7: Outbound call

The preceding figure includes only key messages that are described in this section.

The following messages illustrate the use of the `ms-early-media` option tag in messages that are sent from and received by a **UAC**.

4.4.2.1 Step 1: INVITE Is Sent from the UAC

The following **INVITE** includes an `ms-early-media` option tag in a **Supported** header and an **SDP** offer.

```
INVITE sip:+15555550100@example.com;user=phone SIP/2.0
Via: SIP/2.0/TLS 10.56.66.167:3137
Max-Forwards: 70
From: <sip:test1@example.com>;tag=2b95504d65;epid=782abb8f70
To: <sip:+15555550100@example.com;user=phone>
Call-ID: ca22890914c34bf8a7439dfe1e834420
CSeq: 1 INVITE
Contact: <sip:test1@example.com;opaque-user:epid:reTyjuqAaVmcC104qI4vWAA;gruu>
User-Agent: UCCP/2.0.6362.0 OC/2.0.6362.0 (Client)
Ms-Conversation-ID: Achit1olq5CCFcXhRKeZABfaZzvWNe==
Supported: timer
Supported: ms-sender
Supported: ms-early-media
ms-keep-alive: UAC;hop-hop=yes
```
4.4.2.2 Step 7: 183 Message Is Received by the UAC

The following 183 Session Progress message includes an SDP answer.

```
P-Preferred-Identity: <sip:test1@example.com>, <tel:+15555550101>
Supported: ms-conf-invite
Proxy-Authorization: NTLM gop="auth", realm="SIP Communications Service",
    opaque="B25450B8", crand="620d1d6e", cnum="79", targetname="server1.example.com",
    response="0100000008aab30387f6e10ef27db686"
Content-Type: application/sdp
Content-Length: 1076
v=0
o-- 0 0 IN IP4 10.56.66.167
s=session
c=IN IP4 10.56.66.167
b=CT:99980
t=0 0
m=audio 50016 RTP/AVP 114 111 112 115 4 8 0 97 101
k=base64:Bcw/3c0RQ/ndiix3QiLgO9s3z1ZhEcLJ32cS5c74zuN5myIrxx1leIA4kErwh
a=candidate:Hfb3G/XvuVS7g3XYnDfjyyZ8aiUsFUhQRkndB9g3vU 1 x4Ykst3u0C7f7mA00oKnMQ UDP
    0.900 10.56.66.167 50016
a=candidate:Hfb3G/XvuVS7g3XYnDfjyyZ8aiUsFUhQRkndB9g3vU 2 x4Ykst3u0C7f7mA00oKnMQ UDP
    0.900 10.56.66.167 50008
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
    inline:aAzhJhKx1bOgjuVWNf18Cf1K9I55J1b6V7IAWP|2^31|1:1
a=cryptoscale:2 AES_CM_128_HMAC_SHA1_80
    inline:YqAkJqVuZOMKH1uaXvi+8kjiJ1Rsiyngtch2AAAsk|2^31|1:1
a=maxptime:200
a=rtpmap:114 x-msrta/16000
a=fmtp:114 bitrate=29000
a=rtpmap:111 SIREN/16000
a=fmtp:111 bitrate=16000
a=rtpmap:112 G7221/16000
a=fmtp:112 bitrate=24000
a=rtpmap:115 x-msrta/8000
a=fmtp:115 bitrate=11800
a=rtpmap:116 AAL2-G726-32/8000
a=rtpmap:4 G723/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:97 RED/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16
a=encryption:optional
```
4.4.2.3 Step 13: 200 Message Is Received by the UAC

The following **200 OK** message repeats the SDP answer that was sent in the preceding 183 Session Progress message.

```plaintext
SIP/2.0 200 OK
Via: SIP/2.0/TLS 10.56.66.167:3137;ms-received-port=3137;ms-received-clid=100
FROM: "test1"<sip:test1@example.com>;tag=2b95504d65;epid=782abb8f700
TO: <sip:+15555550100@example.com;user=phone>;epid=6477F45221;tag=b5bb1243e3
CSEQ: 1 INVITE
CALL-ID: ca22890914c34bf8a7439dfe1e834420
RECORD-ROUTE: <sip:server1.example.com:5061;transport=tls;ms-role=rs-from;lr;ms-route-sig=aaelhWZJsyQvUcPVgXY5rCBgN5MnVHAdhIeytIQA>
CONTACT: <sip:server1.example.com:5061;transport=tls;ms-role-uds-from;lr;ms-route-sig=aaelhWZJsyQvUcPVgXY5rCBgN5MnVHAdhIeytIQA>
CONTENT-LENGTH: 740
SUPPORTED: gruu-10
SUPPORTED: replaces
CONTENT-TYPE: application/sdp; charset=utf-8
ALLOW: UPDATE
P-ASSERTED-IDENTITY: <sip:+17036508897@example.com;user=phone>
SERVER: RTCC/3.0.0.0 MediationServer
ALLOW: Ack, Cancel, Bye, Invite, Refer
v=0
o-- 0 0 IN IP4 10.198.92.126
s=conference
c=IN IP4 10.198.92.126
b=CT:1000
t=0 0
m=audio 60625 RTP/SAVP 111 115 8 97 101
m=IN IP4 10.198.92.126
a=rtcp:60532
a=candidate:ZHqwSbPvIZyDX24RjvIW4lryUx/QbdAiP7FyQ0yvTGo 1 Bx2Is+Wl/HJbdQKM3FIuKg UDP 0.900 10.198.92.126 60625
a=candidate:ZHqwSbPvIZyDX24RjvIW4lryUx/QbdAiP7FyQ0yvTGo 2 Bx2Is+Wl/HJbdQKM3FIuKg UDP 0.900 10.198.92.126 60532
a=crypto:2 AES_CM_128_HMAC_SHA1_80
inline:Pb+r13y4U1xd47F8USsgDc/zNOIBV5a0Ev2abRTJ2^31|1:1
a=label:main-audio
a=encryption:rejected
a=rtpmap:111 SIREN/16000
a=fmtp:111 bitrate=16000
a=rtpmap:97 RED/8000
```

4.4.2.3 Step 13: 200 Message Is Received by the UAC

The following **200 OK** message repeats the **SDP answer** that was sent in the preceding 183 Session Progress message.

```plaintext
SIP/2.0 200 OK
Via: SIP/2.0/TLS 10.56.66.167:3137;ms-received-port=3137;ms-received-clid=100
FROM: "test1"<sip:test1@example.com>;tag=2b95504d65;epid=782abb8f700
TO: <sip:+15555550100@example.com;user=phone>;epid=6477F45221;tag=b5bb1243e3
CSEQ: 1 INVITE
CALL-ID: ca22890914c34bf8a7439dfe1e834420
RECORD-ROUTE: <sip:server1.example.com:5061;transport=tls;ms-role=rs-from;lr;ms-route-sig=aaelhWZJsyQvUcPVgXY5rCBgN5MnVHAdhIeytIQA>
CONTACT: <sip:server1.example.com:5061;transport=tls;ms-role-uds-from;lr;ms-route-sig=aaelhWZJsyQvUcPVgXY5rCBgN5MnVHAdhIeytIQA>
CONTENT-LENGTH: 740
SUPPORTED: gruu-10
SUPPORTED: replaces
CONTENT-TYPE: application/sdp; charset=utf-8
ALLOW: UPDATE
P-ASSERTED-IDENTITY: <sip:+17036508897@example.com;user=phone>
SERVER: RTCC/3.0.0.0 MediationServer
ALLOW: Ack, Cancel, Bye, Invite, Refer
v=0
o-- 0 0 IN IP4 10.198.92.126
s=conference
```
4.5 ms-bypass SIP Supported Header Option Tag

4.5.1 Inbound Call

Figure 8: Inbound call
The messages in the following subsections illustrate the use of the **ms-bypass** option tag in a **Supported** header in messages that are sent from and received by a protocol client.

4.5.1.1 Step 6: INVITE Message Is Received by the Protocol Client

```plaintext
INVITE sip:192.168.1.114:4535;transport=tls;ms-opaque=acee5f6d3a;ms-received-cid=475300 SIP/2.0
```

Record-Route: <sip:PROXY.company1:5061;transport=tls;opaque=state:F:Ci.R475300:Ieh.gU65xODwq_j78KvdcC-dRxW712Bav90EcfECdswTe7QM4niMEToT01_iwBjHnKsZygY3jngAA!1r;ms-route=sig=dcrEzxvkg3iKgq2ApNy1xQCYC7NWW4E+yCMYxqjF3JlxxfinKsZgY3jngAA>;tag=45F7A969AE33112CB9877940D7F56D40 Via: SIP/2.0/TLS 10.1.1.54:5061;branch=z9hG4bK1C7C8A0E.19AB9CC7A4B7C3D3;branched=TRUE;ms-internal-info="cehce-xx2qCps3A_ZSAwy8D4JlygqxdKREgf1VFT6noRjHnKsZUY47CgAA" Authentication-Info: TLS-DK qop="auth", opaque="F755045D", srand="CC46B5FD", snnum="26", rspauth="d6179291f72761e057a67adb7288fd256c2b1e4d", targetname="PROXY.company1", realm="SIP Communications Service", version=4 Max-Forwards: 69 Content-Length: 3161 Via: SIP/2.0/TLS 10.1.1.102:57350;branch=z9hG4bKe82f3c;ms-received-port=57350;ms-received-cid=475900 From: <sip:5259876543;phone-context=Location1@company1;user=phone>;epid=CDCFEF8F18;tag=3d965223ea To: <sip:+14251234567@company1;user=phone>;epid=54dd5867e8 CSeq: 35 INVITE Call-ID: df601bb2d-c42e-4677-b921-c9dbf4e25940 Contact: <sip:5259876543@company1;gruu;opaque= srvr:MediationServer:XzRY6u68aVmpMcVYFs0hQA;grid=bd9c42fc168147d0af4df8f84f718910b>;isGateway Supported: replaces Supported: ms-safe-transfer Supported: ms-bypass Supported: ms-dialog-route-set-update Supported: timer Supported: 100rel Supported: gruu=10 User-Agent: Mediation Server Content-Type: multipart/alternative; boundary=9dvaKhfhPJxCOyObvB70o0f2xfqijXN3J Allow: ACK Session-Expires: 1800 Min-SE: 90 Allow: CANCEL,BYE,INVITE,REFER,NOTIFY,PRACK,UPDATE P-Asserted-Identity: <sip:+4259876543@company1;user=phone> History-Info: <sip:user112@company1>;index=1 --9dvakHhfPjxCoyObvB70o0f2xfgijXN3J Content-Type: application/sdp Content-ID: <727e03bb9-6acc-453b-ae09-4b8671344d83> Content-Disposition: Session;handling=optional;ms-proxy-2007fallback v=0 o=-- 1 0 IN IP4 10.1.1.102 s=session c=IN IP4 10.1.1.102 b=CT:1000000 t=0 0 m=audio 56568 RTP/AVP 0 8 115 118 97 101 c=IN IP4 10.1.1.102 a-rtpc:56569 a-candidate:WPBoiU8NLp21GV4/zj/6WviEjTkj55FxhrdRKH1Zcc 1 0TavBj1axiy4rc19atygw UDP 0.830 10.1.1.102 56569 a-candidate:WPBoiU8NLp21GV4/zj/6WviEjTkj55FxhrdRKH1Zcc 2 0TavBj1axiy4rc19atygw UDP 0.830 10.1.1.102 56569 a-candidate:WpLmSm3DP4aSPQloj2AK1UYeGDPsldlRetVScj5izM 1 5VdtqyYIzmPfpth0Ttx5Mcg TCP 0.150 10.3.0.7 59954
```
4.5.1.2 Step 17: 200 Message Is Sent by the Protocol Client

SIP/2.0 200 OKVia: SIP/2.0/TLS 10.1.1.54:5061;branch=z9hG4bK1C7C8A0E.19AB9CC7A4B7C3D3;branched=True;ms-info="cehce-xXzqcRs3A_ZSAwy8D4JLgyqxDKREgfIVFt6noRjHnKsZUY47CgAA"Via: SIP/2.0/TLS
4.5.2 Outbound Call

![Outbound Call Diagram]

**Figure 9: Outbound call**
The messages in the following subsections illustrate the use of the **ms-bypass** option tag in a **Supported** header in messages that are sent from and received by a protocol client.

### 4.5.2.1 Step 1: INVITE Message Is Sent by the Protocol Client

```
INVITE sip:+14258901234@company1;user=phone SIP/2.0
Via: SIP/2.0/TLS 192.168.1.114:4535
Max-Forwards: 70
From: <sip:user112@company1>;tag=ed04066c4a;epid=54dd5867e8
To: <sip:14258901234@company1;user=phone>
Call-ID: e571df11a45947f1a5b90da8d957b8ae
CSeq: 1 INVITE
Contact: <sip:user112@company1;opaque=user;epid=jVxLXX19112yFm93r_ArNgAA;gruu>
User-Agent: Client 1.0
Ms-Conversation-ID: AcrcCQkQ2CGV+fQQpS5OprrWuDL+KaYQ==
Supported: timer
Supported: ms-bypass
Supported: replaces
Supported: ms-conf-invite
Proxy-Authorization: TLS-DSK qop="auth", realm="SIP Communications Service",
opaque="79504505", targetname="PROXY.company1", crand="738839d3", cnum="12",
response="2b5e64b529a1493e07894772e5ce6d6ca06bf23"
Content-Type: multipart/altemative;boundary="-----_NextPart_000_0003_01CAC1FF.366488E0"
Content-Length: 3052

-----_NextPart_000_0003_01CAC1FF.366488E0
Content-Type: application/sdp
Content-Transfer-Encoding: 7bit
Content-ID: <2dd1547f1a2043c2a622586b444229e2>
Content-Disposition: session; handling=optional; ms-proxy=2007fallback

v=0
o-- 0 0 IN IP4 192.168.1.114
s=session
c=IN IP4 192.168.1.114
b=CT:99980
m=audio 25486 RTP/AVP 0
a=candidate:XhpPtyjMgVxXihNFgBIKmdLFIVXLW+eYRbaobG+X43A 1 4q/jKjde54nbj5afchXnA UDP 0.830
192.168.1.114.25486
a=candidate:XhpPtyjMgVxXihNFgBIKmdLFIVXLW+eYRbaobG+X43A 2 4q/jKjde54nbj5afchXnA UDP 0.830
192.168.1.114.25487
```

[MS-OCPSSTN] - v20190618
Session Initiation Protocol (SIP) for PSTN Calls Extensions
Copyright © 2019 Microsoft Corporation
Release: June 18, 2019
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:0X1qC0pFx84FwIkR39xpFDa2HuNdtAB+6ekK1y5a|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80 inline:b28SzSCS5dH7eBr13AhecN34gKb80eCYQG61MwxbC|2^31|1:1
a=crypto:3 AES_CM_128_HMAC_SHA1_80 inline:8LUckwDobd31ORi6KZL7yf+My7wvCwfc5NW7G79|2^31

a=maxptime:200
a=rtpmap:114 x-msrta/16000
a=fmt:114 bitrate=29000
a=rtpmap:9 G722/8000
a=rtpmap:112 G7221/16000
a=fmt:112 bitrate=24000
a=rtpmap:111 SIREN/16000
a=fmt:111 bitrate=16000
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:116 AAL2=0x76-32/8000
a=rtpmap:115 x-msrta/8000
a=fmt:115 bitrate=11800
a=rtpmap:4 G723/8000
a=rtpmap:97 RED/8000
a=rtpmap:13 CN/8000
a=rtpmap:118 CN/16000
a=rtpmap:101 telephone-event/8000
a=fmt:101 0-16
a=encryption:optional
a=x-bypassid:9CD08A01-E998-456a-AC8A-D028930B5933

------=_NextPart_000_0003_01CAC1FF.366488E0
Content-Type: application/sdp
Content-Transfer-Encoding: 7bit
Content-ID: <3d45476919eb4c81be0c4e19c730c655>
Content-Disposition: session; handling=optional

v=0
o=- 0 0 IN IP4 192.168.1.114
s=session
c=IN IP4 192.168.1.114
b=CT:99980

m=audio 28238 RTP/AVP 114 9 112 111 0 8 116 115 4 97 13 118 101
a=ice-ufrag:ayqK
a=ice-pwd:ckRBkR22lv38PhlmqvzmVe5n
a=candidate:1 1 UDP 2130706431 192.168.1.114 28238 typ host
da=candidate:1 2 UDP 2130705918 192.168.1.114 28239 typ host
da=candidate:2 1 TCP-PASS 6556159 10.3.0.7 59752 typ relay raddr 192.168.1.114 114 rport 50031
nda=candidate:2 2 TCP-PASS 6556158 10.3.0.7 59752 typ relay raddr 192.168.1.114 114 rport 50031
nda=candidate:3 1 UDP 16648703 10.3.0.7 50217 typ relay raddr 192.168.1.114 114 rport 50006
nda=candidate:3 2 UDP 16648702 10.3.0.7 50942 typ relay raddr 192.168.1.114 114 rport 50007
da=candidate:4 1 TCP-ACT 7076863 10.3.0.7 59752 typ relay raddr 192.168.1.114 114 rport 50031
nda=candidate:4 2 TCP-ACT 7076350 10.3.0.7 59752 typ relay raddr 192.168.1.114 114 rport 50031
da=candidate:5 1 TCP-ACT 1687498975 192.168.1.114 50031 typ srflx raddr 192.168.1.114 114 rport 50031
nda=candidate:5 2 TCP-ACT 1684798462 192.168.1.114 50031 typ srflx raddr 192.168.1.114 114 rport 50031
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:0X1qC0pFx84FwIkR39xpFDa2HuNdtAB+6ekK1y5a|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80 inline:b28SzSCS5dH7eBr13AhecN34gKb80eCYQG61MwxbC|2^31|1:1
a=crypto:3 AES_CM_128_HMAC_SHA1_80 inline:8LUckwDobd31ORi6KZL7yf+My7wvCwfc5NW7G79|2^31
a=maxptime:200
a=rtpmap:114 x-msrta/16000
a=fmt:114 bitrate=29000
a=rtpmap:9 G722/8000
a=rtpmap:112 G7221/16000
a=fmt:112 bitrate=24000
a=rtpmap:111 SIREN/16000
a=fmt:111 bitrate=16000
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:116 AAL2=0x76-32/8000
**4.5.2.2 Step 13: 200 OK Message Is Received by the Protocol Client**

```
SIP/2.0 200 OK
Authentication-Info: TLS-DSK qop="auth", opaque="F755045D", srnd="1D9666D9", s_num="17", rsrpath="3359c8ac2e6229b2eb9738ac707dc83e54f65f0", targetname="PROXY.company1", realm="SIP Communications Service", version=4
Via: SIP/2.0/TLS 192.168.1.114:4535;ms-received-port=4535;ms-received-cid=475300
FROM: "user112"<sip:user112@company1>;tag=ed04066c4a;epid=54dd5867e8
TO: <sip:+14258901234@company1;user=phone>;tag=201fec487e;epid=CDCFEF8F18
CSEQ: 1 INVITE
CALL-ID: e571df11a45947947af5b9da8d95b8ae
CONTACT: <sip:ms5.company1@company1;gruu;opaque=srvr:MediationServer:Xzry6u68aVipMyYFiYs0hQAA;grid=46236573d00ae4a339d83726b2bf7f?ab>;lsGateway
CONTENT-LENGTH: 422
SUPPORTED: replaces
SUPPORTED: ms-safe-transfer
SUPPORTED: ms-bypass
SUPPORTED: ms-dialog-route-set-update
SUPPORTED: gruu=10
SUPPORTED: timer
SUPPORTED: 100rel
CONTENT-TYPE: application/gw-sdp
ALLOW: ACK,P-ASSERTED-IDENTITY: <sip:+14258901234@company1;user=phone>
SERVER: Mediation Server
Ms-Accepted-Content-ID: <3d45476919eb4c81be0c4e19c730c655>
ms-trunking-peer: gateway.company1.com;trunk=trunk1;User-Agent="Gateway 1.0"
Allow: CANCEL,BYE,INVITE,REFER,NOTIFY,PRACK,UPDATE
Session-Expires: 1800;refresher=ws
Min-SE: 90
```

```
v=0
o=Gateway 1303417666 1303417345 IN IP4 10.1.2.12
s=session
c=IN IP4 10.1.2.12
t=0 0
m=audio 6390 RTP/SAVP 0 13 101
a=ms:6390 RTP/SAVP 0 13 101
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15
a=ptime:20
a=x-mediasettings:signalbooslessupported
```
4.6 ms-accepted-content-id SIP Header

4.6.1 Inbound Call

The following messages illustrate the use of the ms-accepted-content-id Session Initiation Protocol (SIP) header in messages that are sent from and received by a protocol client.

4.6.1.1 Step 6: INVITE Message Is Received by the Protocol Client
INVITE sip:192.168.1.114:4535;transport=tls;ms-opaque=acee5f6d3a;ms-received-cid=475300
SIP/2.0
Record-Route: <sip:PROXY.company1:5061;transport=tls;ms-opaque=acee5f6d3a;ms-received-cid=475300>
SIP/2.0
Via: SIP/2.0/TLS 10.1.1.54:5061;branch=z9hG4bK1C7C8A0E.19AB9CC7A4B7C3D3;ms-received-cid=475300
SIP/2.0
Via: SIP/2.0/TLS 10.1.1.102:57350;branch=z9hG4bKe82f3c;ms-received-cid=475300
SIP/2.0
Via: SIP/2.0/TLS 10.3.0.7:59954;branch=z9hG4bKHe45c3;
Authentication-Info: TLS-DSK gop="auth", opaque="7955045D", snum="26", rsrpth="d6179291f72761e057a67dab7288fd256c2b1e4d", targetname="PROXY.company1", realm="SIP Communications Service", version=4, max-headers=69
Content-Length: 3161
Content-Type: multipart/alternative; boundary=9dvaKhfhPJxCOyObvB700of2xfq1XN3J
Content-Disposition: Session;handling=optional;ms-proxy

v=0
o=- 1 0 IN IP4 10.1.1.102
a=sessioin
c=IN IP4 10.1.1.102
b=CT:1000000
m=audio 56568 RTP/AVP 0 8 115 13 118 97 101
c=IP4 10.1.1.102 10.1.1.102
a=rtcp:56569
a=rtcp:56569

[MS-OCPS TN] - v20190618
Session Initiation Protocol (SIP) for PSTN Calls Extensions
Copyright © 2019 Microsoft Corporation
Release: June 18, 2019
Step 17: 200 Message Is Sent by the Protocol Client

SIP/2.0 200 OK
Via: SIP/2.0/TLS 10.1.1.54:5061;branch=z9hG4bK1C7C8A0E.19AB9CC7A4B7C3D3;branched=TRUE;ms-internal-info="cehece-xZqgcRsbA3a_ZSawy84DjLgyXxDKReGFvIF6noRjJhNszU2UY47CqAA"; SIP/2.0/TLS 10.1.1.54:5061:branch=z9hG4bKb8E2f3c;ms-received-port=57350;ms-received-cl=47590F00;ms-useragent="Client"

sip:2.0 200 OKVia: SIP/2.0/TLS 10.1.1.54:5061;branch=z9hG4bK1C7C8A0E.19AB9CC7A4B7C3D3;branched=TRUE;ms-internal-info="cehece-xZqgcRsbA3a_ZSawy84DjLgyXxDKReGFvIF6noRjJhNszU2UY47CqAA"; SIP/2.0/TLS 10.1.1.54:5061:branch=z9hG4bKb8E2f3c;ms-received-port=57350;ms-received-cl=47590F00;ms-useragent="Client"

4.6.2 Outbound Call

The messages in the following subsections illustrate the use of the **ms-accepted-content-id** Session Initiation Protocol (SIP) header in messages that are sent from and received by a protocol client.

### 4.6.2.1 Step 1: INVITE Message Is Sent by the Protocol Client

**Figure 11: Outbound call**

The messages in the following subsections illustrate the use of the **ms-accepted-content-id** Session Initiation Protocol (SIP) header in messages that are sent from and received by a protocol client.
INVITE sip:+14258901234@company1;user=phone SIP/2.0
Via: SIP/2.0/TLS 192.168.1.114:4535
Max-Forwards: 70
From: <sip:user112@company1>;tag=ed04066c4a;epid=54dd5867e8
To: <sip:+14258901234@company1;user=phone>
Call-ID: e571df11a45947f1a5b5b0da8d957b8ae
CSeq: 1 INVITE
Contact: <sip:user112@company1;opaque=user;epid:jYxLLK91112yFm93r_ArnNgA;gruu>
User-Agent: Client 1.0
Ms-Conversation-ID: AcrCQkq2CGV+fQqSp5OprWuDL+KaYQ==
Supported: timer
Supported: histinfo
Supported: ms-safe-transfer
Supported: ms-sender
Supported: ms-early-media
Supported: 100rel
ms-keep-alive: UAC; hop-hop=yes
Allow: INVITE, BYE, ACK, CANCEL, INFO, UPDATE, REFER, NOTIFY, BENOTIFY, OPTIONS
P-Preferred-Identity: <sip:user112@company1>, <tel:+14251234567>
Supported: ms-bypass
Supported: replaces
Supported: ms-conf-invite
Proxy-Authorization: TLS=DSK gop="auth", realm="SIP Communications Service",
opaque="77550450", targetname="PROXY.company1", crand="738893d", cnum="12",
response="2b5e54505f0993e07894772e5ce0dca06pdf1"
Content-Type: multipart/alternative;boundary="-----_NextPart_000_0003_01CAC1FF.366488E0"
Content-Length: 3052

-----_NextPart_000_0003_01CAC1FF.366488E0

Content-Type: application/sdp
Content-Transfer-Encoding: 7bit
Content-ID: <2dd1547f1a2043c2a622586b444229e2>
Content-Disposition: session; handling=optional; ms-proxy=2007fallback
v=0
o-- 0 0 IN IP4 192.168.1.114
s=session
c=IN IP4 192.168.1.114
b=CT:99980
m=audio 25486 RTP/AVP 114 9 112 111 0 8 116 115 4 97 13 118 101
a=candidate:XhpPtyjMgVxXoHnfBFfMhLflVX1Lt+YRbaobG+X43 A 4/Q/jKJde54nb5afchXniA UDP 0.830
192.168.1.114 25486
a=candidate:XhpPtyjMgVxXoHnfBFfMhLflVX1Lt+YRbaobG+X43 A 4/Q/jKJde54nb5afchXniA UDP 0.830
192.168.1.114 25487
a=candidate:+oWYSe96Hn9d797RgjAj471mcm2GgeoLH816sNIM 1 wiGTb6h653yn1/Keu8TGSg TCP 0.190
10.3.0.7 57587
a=candidate:+oWYSe96Hn9d797RgjAj471mcm2GgeoLH816sNIM 2 wiGTb6h653yn1/Keu8TGSg TCP 0.190
10.3.0.7 57587
a=candidate:+LqcUBiwCwTej3u0ihJq7UT55WlrN3NNWPvln7S4h0 x 3X3HHBGYzFqLk8Tz5d6vNQ UDP 0.490
10.3.0.7 51247
a=candidate:+LqcUBiwCwTej3u0ihJq7UT55WlrN3NNWPvln7S4h0 x 3X3HHBGYzFqLk8Tz5d6vNQ UDP 0.490
10.3.0.7 50976
a=candidate:D3zxKqWh6pd3WmMoBq9itq7bH6y14ldMml8zRb13J6c 1 Aw+lYV2GlnNLlF40tdHg TCP 0.250
192.168.1.114 50007
a=candidate:D3zxKqWh6pd3WmMoBq9itq7bH6y14ldMml8zRb13J6c 2 Aw+lYV2GlnNLlF40tdHg TCP 0.250
192.168.1.114 50000
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:0X1qCCFxF4W1krr39XPDsA2BuHdATB+6enkIYi5a|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80 inline:b28SzCBSdH7eBr13AhecN34qKh80eCQyG61MwxbC|2^31|1:1
a=crypto:3 AES_CM_128_HMAC_SHA1_80 inline:8LUckwDobd31ORi6KGZLYF+My7wCwftc5Nw7G79|2^31
a=maxptime:200
a=rtmap:114 x-mrsta/16000
a=fmt:114 bitrate:29000
a=rtmap:9 G722/8000
a=rtpmap:112 G7221/16000
a=fmtp:112 bitrate=24000
a=rtpmap:111 SIREN/16000
a=fmtp:111 bitrate=16000
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:116 AAL2-G726-32/8000
a=rtpmap:115 x-mrsta/8000
a=fmtp:115 bitrate=11800
a=rtpmap:4 G723/8000
a=rtpmap:97 RED/8000
a=rtpmap:13 CN/8000
a=rtpmap:118 CN/16000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16
a=encryption:optional
a=x-bypassid:9CD08A01-E998-456a-AC8A-D028930E5933

------NeedPart_000_0003_01CAC1FF.366488ED
Content-Type: application/sdp
Content-Transfer-Encoding: 7bit
Content-ID: <3d45476919eb4c81be0c4e19c730c655>
Content-Disposition: session; handling=optional

v=0
o=- 0 0 IN IP4 192.168.1.114
s=session
c=IN IP4 192.168.1.114
b=CT:99980
m=audio 28238 RTP/AVP 114 9 112 111 0 8 116 115 4 97 13 118 101
a=ice-ufrag:ayqK
a=ice-pwd:ckRbkR22lv38PhlmqvzmVe5n
a=candidate:1 1 UDP 2130706431 192.168.1.114 28238 typ host
a=candidate:1 2 UDP 2130705918 192.168.1.114 28239 typ host
a=candidate:2 1 TCP-PASS 6556159 10.3.0.7 59752 typ relay raddr 192.168.1.114 rport 50031
a=candidate:2 2 TCP-PASS 6556158 10.3.0.7 59752 typ relay raddr 192.168.1.114 rport 50031
a=candidate:3 1 UDP 16648703 10.3.0.7 50217 typ relay raddr 192.168.1.114 rport 50006
a=candidate:3 2 UDP 16648702 10.3.0.7 58942 typ relay raddr 192.168.1.114 rport 50007
a=candidate:4 1 TCP-ACT 7076863 10.3.0.7 59752 typ relay raddr 192.168.1.114 rport 50031
a=candidate:4 2 TCP-ACT 7076350 10.3.0.7 59752 typ relay raddr 192.168.1.114 rport 50031
a=candidate:5 1 TCP-ACT 1684798975 192.168.1.114 50031 typ srflx raddr 192.168.1.114 rport 50031
a=candidate:5 2 TCP-ACT 1684798462 192.168.1.114 50031 typ srflx raddr 192.168.1.114 rport 50031
a=cryptoscale:1 client AES_CM_128_HMAC_SHA1_80
inline:OY1qCCFx84fw1krR39XpFDSA2HuNtdAB+6ekK1y5a|2^31|1:1
a=crypto:2 AES_CM_128_HMAC_SHA1_80 inline:b28SzCBSdH7eBr13AhecN34gKh8OeCYQG61MwxwC|2^31|1:1
a=crypto:3 AES_CM_128_HMAC_SHA1_80 inline:8LUckwDobd31ORi6KGZLYf+My7wvCwftc5Nw7G79j|2^31
a=maxptime:200
a=rtpmap:114 x-mrsta/16000
a=fmtp:114 bitrate=29000
a=rtpmap:9 G722/8000
a=rtpmap:112 G7221/16000
a=fmtp:112 bitrate=24000
a=rtpmap:111 SIREN/16000
a=fmtp:111 bitrate=16000
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:116 AAL2-G726-32/8000
a=rtpmap:115 x-mrsta/8000
a=fmtp:115 bitrate=11800
a=rtpmap:4 G723/8000
a=rtpmap:97 RED/8000
a=rtpmap:13 CN/8000
a=rtpmap:118 CN/16000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-16
a=encryption:optional
4.6.2.2 Step 13: 200 Message Is Received by the Protocol Client

SIP/2.0 200 OK
Authentication-Info: TLS-DSK qop="auth", opaque="F755045D", srnd="1D9666D9", snum="17", rasrauth="3359c8a2e6229b2eB973Bac707dc8c3e54f65f0", targetname="PROXY.company1", realm="SIP Communications Service", version=4
Via: SIP/2.0/TLS 192.168.1.168.114:4535;ms-received-port=4535;ms-received-cid=475300
FROM: "user112"@sip:user112@company1;tag=ed04066c4a;epid=54dd5867e8
TO: <sip:+14258901234@company1;user=phone>;tag=201fec487e;epid=DCDFEF8F18
CSEQ: 1 INVITE
CALL-ID: e571d11a45947f1a5b90da8d957b8ae
RECORD-ROUTE: <sip:PROXY.company1:5061;transport=tls;opaque=state:F:Cl.R475300;lr;ms-route-sig=msro05beehYaHu9dKxsfQPMmLaiGm-c5DzixYV7AfRG2hHch3QtqV3jngAA>
CONTACT: <sip:ms5.company1@company1;gruu;opaque=svrm:MediationServer:XzRv6u68avIpMoYVfYs0hQA;grid=46236573d0ae4a339d8726b2bf7af>;isGateway
CONTENT-LENGTH: 422
SUPPORTED: replaces
SUPPORTED: ms-safe-transfer
SUPPORTED: ms-bypass
SUPPORTED: ms-dialog-route-set-update
SUPPORTED: gruu=10
SUPPORTED: timer
SUPPORTED: 100rel
CONTENT-TYPE: application/gw-sdp
ALLOW: ACK
P-ASSERTED-IDENTITY: <sip:+14258901234@company1;user=phone>
SERVER: Mediation Server
Ms-Accepted-Content-ID: <3d45476919eb4c81be0c4e19c730c655>
ms-trunking-peer: gateway.company1.com;trunk=trunk1;User-Agent="Gateway 1.0"
Allow: CANCEL,BYE,INVITE,REFER,NOTIFY,PRACK,UPDATE
Session-Expires: 1800;refresher=uas
Min-SE: 90

v=0
o=Gateway 1303417666 1303417345 IN IP4 10.1.2.12
s=session
c=IN IP4 10.1.2.12
t=0 0
m=audio 6390 RTP/SAVP 0 13101
m=audio 6390 RTP/SAVP 0 13101
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=tracks:2
a=xmediasettings:signalboostunsupported

4.7 ms-trunking-peer SIP Header

The messages in the following subsections illustrate the use of the ms-trunking-peer Session Initiation Protocol (SIP) header in messages that are sent from and received by a protocol client.
4.7.1 Inbound Call

The message in the following subsection illustrates the use of the `ms-trunking-peer` SIP header for inbound calls. For a diagram of the inbound call, see the figure in section 4.6.1.

4.7.1.1 Step 6: INVITE Message Is Received by the Protocol Client

```
INVITE sip:192.168.1.114:4535;transport=tls;ms-opaque=acee5f6d3a;ms-received-cid=475300
SIP/2.0
Record-Route: <sip:PROXY.company1:5061;transport=tls;opaque=state:F:Ci.R475300:1eh.gU65xDvqj_j78KvdcC-
dRxh71EBav9oECFECdsTe7QM4niMETOToiTiwBjHnKsZgY3jnqAA1r;ms-route=sig=dccEzxxvk31Kgcp2ApNy1xBCYC7NWwE=
pyCMYxqjJF3xKhfKsZgY3jnqAA>;tag=45f7a969AE33112CB9877940D7F56D40
Via: SIP/2.0/TLS 10.1.1.54:5061;branch=z9hG4bK1c7C6A0E.19AB9CC7A4B7C3d3;branched=TRUE;ms-
internal-info="ehce-xxzqRs3A_ZSAwy8D4JlygqyKrKEgf1FVtt6oroRJhKsZU47CgAA"
Authentication-Info: TLS-DK qop="auth", opaque="F755045D", srand="CC46B5FD", snum="26",
rsprauth="d617293197761e057a67ad72288fd2562b1e4d", targetname="PROXY.company1", realm="SIP
Communications Service", version=4
Max-Forwards: 69
Content-Length: 3161
Via: SIP/2.0/TLS 10.1.1.102:57350;branch=z9hG4bKe82f3c;ms-
received-port=57350;ms-received-cid=475900
From: <sip:4259876543;phone-context=Location1@company1;user=phone>;epid=CDCFEF8F18;tag=3d965223ea
To: <sip:+14251234567@company1;user=phone>;epid=54dd5867e8
CSeq: 35 INVITE
Call-ID: df601b2d-e42e-4677-b921-c9db4e25940
Contact: <sip:ms5.company1@company1;gruu;opaque=srvr:MediationServer:XzRY6u68aVipMcYVFYs0hQA;grid=bd9
c42fc6818147d0af4d8f84f718910b>;isGateway
Supported: replaces
Supported: ms-safe-transfer
Supported: ms-bypass
Supported: ms-dialog-route-set-update
Supported: timer
Supported: 100rel
Supported: gruu=10
User-Agent: Mediation Server
Content-Type: multipart/alternative; boundary=9dvaKhfhPJxCOyObvB70o0f2xfgiXN3J
Allow: ACK
ms-trunking-peer: gateway.company1.com;trunk=trunk1;User-Agent="Gateway 1.0"
Session-Expires: 1800
Min-SE: 90
Allow: CANCEL, BYE, INVITE, REFER, NOTIFY, PUBLISH, UPDATE
P=Asserted-Identity: <sip:+4259876543@company1;user=phone>
History-Info: <sip:user112@company1>;index=1
--9dvaKhfhPJxCOyObvB70o0f2xfgiXN3J
Content-Type: application/sdp
Content-ID: <72e03bb9-6acc-453b-ae09-4b8671344d83>
Content-Disposition: Session;handling=optional;ms-proxy-2007fallback
v=0
o=-- 1 0 IN IP4 10.1.1.102
s=session
c=IN IP4 10.1.1.102
b=CT:100000
m=audio 56568 RTP/AVP 0 8 115 113 118 97 101
c=IN IP4 10.1.1.102
a=rtcp:56569
a-candidate:WPBogIUSNLP21GV4/zj/6WViEjTkj55FxhrdRKhIzcc 1 0KavBjlaxiy4rc19atywg UDP 0.830
10.1.1.102 56568
a-candidate:WPBogIUSNLP21GV4/zj/6WViEjTkj55FxhrdRKhIzcc 2 0KavBjlaxiy4rc19atywg UDP 0.830
10.1.1.102 56568
```
4.7.2 Outbound Call

The message in the following subsection illustrates the use of the **ms-trunking-peer SIP** header for outbound calls. For a diagram of the outbound call, see the figure in section 4.6.2.
4.7.2.1 Step 13: 200 Message Is Received by the Protocol Client

SIP/2.0 200 OK
Authentication-Info: TLS-DSK qop="auth", opaque="F755045D", srand="1D9666D9", snum="17", rsnauth="3359c8ac2e6229b2eb9738ac707dc83e54f65f0", targetname="PROXY.company1", realm="SIP Communications Service", version=4
Via: SIP/2.0/TLS 192.168.1.114:4535;ms-received-cid=475300
From: "user112"<sip:user112@company1>;tag=ed04066c4a;epid=54dd5867e8
To: <sip:+14258901234@company1;user=phone>;tag=201fec487e;epid=CDCFEF8F18
CSEQ: 1 INVITE
CALL-ID: e571df11a45947f1fa5b90da8d957b8ae
RECORD-ROUTE: <sip:PROXY.company1:5061;transport=tls;opaque=state:F:Ci.R475300;lr;ms-route=dcw05bee8YaRu9dRxhcQMNPLa1GM-c5Dz1kYU7AfKr2hKhCh3QtgY3jngAA>
CONTACT: <sip:ms5.company1@company1;gruu;opaque=srvr:MediationServer:XzRY6u68aVipMvVYFs0hQAA;grid=46236573d0ae44339d83726b2bf7af7ab>;isGateway CONTENT-LENGTH: 422
SUPPORTED: replaces
SUPPORTED: ms-safe-transfer
SUPPORTED: ms-bypass
SUPPORTED: ms-dialog-route-set-update
SUPPORTED: gruu=10
SUPPORTED: timer
SUPPORTED: 100rel
CONTENT-TYPE: application/gw-sdp
ALLOW: ACK
P-ASSERTED-IDENTITY: <sip:+14258901234@company1;user=phone>
SERVER: Mediation Server
Ms-Accepted-Content-ID: <3d45476919eb4c81be0c4e19c730c655>
ms-trunking-peer: gateway.company1.com;trunk=trunk1;User-Agent="Gateway 1.0"
Allow: CANCEL,BYE,INVITE,REFER,NOTIFY,PRACK,UPDATE
Session-Expires: 1800;refresher=was
Min-SE: 90
v=0
o=Gateway 1303417666 1303417345 IN IP4 10.1.2.12
s=session
c=IN IP4 10.1.2.12
k=0
m=audio 6390 RTP/SAVP 0 13 101
a=rtpmap:6391
a=x-bypass
a=recvonly
a=rtcpmap:0 PCMU/8000
a=rtcpmap:101 telephone-event/8000
a=fmtp:101 0-15
a=ptime:20
a=x-mediaseatings:signalboostunSupported

4.8 ms-mediation-generated SIP Header

The messages in the following subsections illustrate the use of the ms-mediation-generated Session Initiation Protocol (SIP) header in messages that are sent from and received by a protocol client.
4.8.1 Outbound Call

Figure 12: Outbound Call

The message in the following subsection illustrates the use of the ms-mediation-generated SIP header for outbound calls. For a diagram of the outbound call, see the preceding figure.

4.8.1.1 Step 5: 183 Message Is Received by the Protocol Client

SIP/2.0 183 Session Progress
Authentication-Info: NTLM rsrpauth="010000000000000000000008AC67ADF27DB686", srand="DF9D53C4", snum="103", opaque="B25450B8", qop="auth", targetname="server1.example.com", realm="SIP Communications Service"
Via: SIP/2.0/TLS 10.56.66.167;ms-received-port=3137;ms-received-cid=100
FROM: "test1"<sip:test1@example.com>;tag-2b95504d65;epid=782abb8f70
4.8.1.2 Step 10: 180 Message Is Received by the Protocol Client

SIP/2.0 180 Ringing
Authentication-Info: NTLM rspauth=0100000000000000000000008AC67ADF27DB686, srand=DF9D53C4, snum=103, opaque=8B25450B88, qop="auth", targetname="server1.example.com", realm="SIP Communications Service"
Via: SIP/2.0/TLS 10.56.66.167:3137;ms-received-port=3137;ms-received-cid=100
FROM: "test1"<sip:test1@example.com>;tag=2b95504d65;epid=782abb8f70
TO: <sip:+15555550100@example.com;user=phone>;epid=6477F45221;tag=b5bb1243e3
CSEQ: 1 INVITE
CALL-ID: ca22890914c34bf8a7439dfe1e834420
CONTENT-LENGTH: 0
5 Security

5.1 Security Considerations for Implementers
None.

5.2 Index of Security Parameters
None.
6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental software. References to product versions include updates to those products.

- Microsoft Office Communicator 2007
- Microsoft Office Communicator 2007 R2
- Microsoft Office Communications Server 2007
- Microsoft Office Communications Server 2007 R2
- Microsoft Lync 2010
- Microsoft Lync Server 2010
- Microsoft Lync Client 2013/Skype for Business
- Microsoft Lync Server 2013
- Microsoft Skype for Business 2016
- Microsoft Skype for Business Server 2015
- Microsoft Skype for Business 2019
- Microsoft Skype for Business Server 2019

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base (KB) number appears with a product name, the behavior changed in that update. The new behavior also applies to subsequent updates unless otherwise specified. If a product edition appears with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the product does not follow the prescription.

<1> Section 2.2.9: This header is not available in Office Communicator 2007, Office Communicator 2007 R2, Office Communications Server 2007, Office Communications Server 2007 R2, Lync 2010, or Lync Server 2010.

<2> Section 3.2: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.

<3> Section 3.2: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.

<4> Section 3.2: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.

<5> Section 3.2: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.

<6> Section 3.2: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.

<7> Section 3.5: Office Communications Server 2007, Office Communicator 2007: This behavior is not supported.
<8> **Section 3.6**: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2: This behavior is not supported.

<9> **Section 3.7**: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2: This behavior is not supported.

<10> **Section 3.8**: Office Communications Server 2007, Office Communicator 2007, Office Communications Server 2007 R2, Office Communicator 2007 R2: This behavior is not supported.

<11> **Section 3.9**: This behavior is not supported in Office Communicator 2007, Office Communicator 2007 R2, Lync 2010, Office Communications Server 2007, Office Communications Server 2007 R2, or Lync Server 2010.
7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last release.
8 Index

A

Abstract data model

anonymous phone URI 20
isGateway parameter 16
ms-accepted-content-id header 21
ms-bypass option tag 21
ms-call-source header 18
ms-early-media option tag 19
ms-mediation-generated header 23
ms-trunking-peer header 22
phone-context parameter 17

Anonymous phone URI 20

abstract data model 20
higher-layer triggered events 20
initialization 20
local events 20
message processing 20
timer events 20
timers 20

Anonymous Phone URI message 14

Applicability 11

C

Capability negotiation 11
Change tracking 60

Contact header

isGateway parameter 16

E

Examples 24

isGateway SIP contact header parameter 24
ms-accepted-content-id SIP header 45
ms-bypass option tag 38
inbound call 38
outbound call 41
ms-bypass SIP supported header option tag 38
ms-call-source SIP header 32
ms-early-media SIP supported header option tag 34
ms-mediation-generated SIP header 54
ms-trunking-peer SIP header 51
phone-context SIP URI parameter 28

Supported header

ms-bypass option tag 38
inbound call 38
outbound call 41

F

Fields - vendor-extensible 12

G

Glossary 7

H

Higher-layer triggered events

anonymous phone URI 20

isGateway parameter 16
ms-accepted-content-id header 22
ms-bypass option tag 21
ms-call-source header 18
ms-early-media option tag 19
ms-mediation-generated header 23
ms-trunking-peer header 22
phone-context parameter 17

I

Implementer - security considerations 57

inbound call examples

isGateway SIP contact header parameter 25
INVITE message received by UAC 24
ms-accepted-content-id SIP header 47
INVITE message received by protocol client 45
ms-bypass SIP supported header option tag 40
INVITE message received by protocol client 39
ms-call-source SIP header 34
200 message sent from UAC 33
605 message sent from UAC 33
INVITE message received by UAC – step 2 32
INVITE message received by UAC – step 8 33
ms-trunking-peer SIP header
INVITE message received by protocol client 52
phone-context SIP URI parameter 29
200 message sent from UAC 28

Index of security parameters 57

Informative references 9

Initialization

isGateway parameter 16
ms-accepted-content-id 16
ms-bypass option tag 21
ms-call-source header 18
ms-early-media option tag 19
ms-mediation-generated header (section 3.9.3 23,
section 6 58)
ms-trunking-peer 22
phone-context parameter 17

Introduction 7

isGateway 16
abstract data model 16
higher-layer triggered events 16
initialization 16
local events 16
message processing 16
timer events 16
timers 16

isGateway message 13

isGateway SIP contact header parameter example 24
inbound call 24
200 message sent from UAC 25
INVITE message received by UAC 24
outbound call 26
200 message received by UAC 27
INVITE message sent from UAC 26

61 / 63

[MS-OCPSTN] - v20190618
Session Initiation Protocol (SIP) for PSTN Calls Extensions
Copyright © 2019 Microsoft Corporation
Release: June 18, 2019
Local events

- anonymous phone URI
- isGateway parameter
- ms-accepted-content-id header
- ms-bypass option tag
- ms-call-source header
- ms-early-media option tag
- ms-trunking-peer header
- phone-context parameter

Message syntax

- Anonymous Phone URI
- isGateway
- ms-accepted-content-id
- ms-bypass
- ms-call-source
- ms-early-media
- ms-mediation-generated
- ms-trunking-peer
- phone-context
- syntax
- transport

Messages

- scour data model
- higher-layer triggered events
- local events
- message processing
- timer events

- ms-accepted-content-id message
- ms-accepted-content-id SIP header example

- ms-bypass
- abstract data model

Example

- inbound call
- outbound call
- higher-layer triggered events
- initialization
- local events
- message processing
- timer events
- timers
INVITE message received by protocol client
outbound call
200 message received by protocol client

N
Normative references

O
Other local events
ms-mediation-generated header
outbound call examples
isGateway SIP contact header parameter
200 message received by UAC
INVITE message sent from UAC
ms-accepted-content-id SIP header
200 message received by protocol client
INVITE message sent by protocol client
ms-bypass SIP supported header option tag
200 OK message received by protocol client
INVITE message sent by protocol client
ms-early-media SIP supported header option tag
183 message received by UAC
200 message received by UAC
INVITE sent from UAC
ms-mediation-generated SIP header
180 message received by protocol client
183 message received by protocol client
ms-trunking-peer SIP header
200 message received by protocol client
phone-context SIP URI parameter
200 message received by UAC
INVITE message sent from UAC

Overview (synopsis)
P
Parameters - security index
phone-context
abstract data model
higher-layer triggered events
initialization
local events
message processing
timer events
timers
phone-context message
phone-context SIP URI parameter example
inbound call
200 message sent from UAC
INVITE message received by UAC
outbound call
200 message received by UAC
INVITE message sent from UAC

Preconditions
Prerequisites
Product behavior

R
References
informative
normative
Relationship to other protocols

S
Security
implementer considerations
parameter index
SIP headers
ms-accepted-content-id
ms-bypass option tag
ms-call-source
ms-early-media option tag
ms-mediation-generated
ms-trunking-peer
SIP URI
phone-context parameter
 Standards assignments
Supported header
ms-bypass option tag
example
inbound call
outbound call

T
Timer events
anonymous phone URI
isGateway parameter
ms-accepted-content-id header
ms-bypass option tag
ms-call-source header
ms-early-media option tag
ms-mediation-generated header
ms-trunking-peer header
phone-context parameter

Timers
anonymous phone URI
isGateway parameter
ms-accepted-content-id header
ms-bypass option tag
ms-call-source header
ms-early-media option tag
ms-mediation-generated header
ms-trunking-peer header
phone-context parameter
Tracking changes
Transport

V
Vendor-extensible fields
Versioning

63 / 63